We consider the notions of operator-valued infinitesimal (OVI) free independence, OVI Boolean independence, and OVI monotone independence. For each notion of OVI independence, we introduce the corresponding infinitesimal transforms, and then we show that the transforms satisfy certain multiplicative property. We also provide an application on complex Wishart matrices via our infinitesimal free multiplicative formula.
We introduce the notion of operator-valued infinitesimal (OVI) Boolean independence and OVI monotone independence. Then we show that OVI Boolean (respectively, monotone) independence is equivalent to the operator-valued (OV) Boolean (respectively, monotone) independence over an algebra of [Formula: see text] upper triangular matrices. Moreover, we derive formulas to obtain the OVI Boolean (respectively, monotone) additive convolution by reducing it to the OV case. We also define OVI Boolean and monotone cumulants and study their basic properties. Moreover, for each notion of OVI independence, we construct the corresponding OVI Central Limit Theorem. The relations among free, Boolean and monotone cumulants are extended to this setting. Besides, in the Boolean case we deduce that the vanishing of mixed cumulants is still equivalent to independence, and use this to connect scalar-valued with matrix-valued infinitesimal Boolean independence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.