Abstract. Repeating patterns represent temporal relations among data items, which could be used for data summarization and data prediction. More and more data of various applications is generated as a data stream. Based on time sensitive concern, mining repeating patterns from the whole history data sequence of a data stream does not extract the current trend of patterns in the stream. Therefore, the traditional strategies for mining repeating patterns on static database are not applicable to data streams. For this reason, an algorithm, named appearing-bit-sequencebased incremental mining algorithm, for efficiently discovering recently repeating patterns from a data stream is proposed in this paper. The appearing bit sequences are used to monitor the occurrences of patterns within a sliding window. Two versions of algorithms are proposed by maintaining the appearing bit sequences of maximum repeating patterns and closed repeating patterns, respectively. Accordingly, the cost of re-mining repeating patterns over a sliding window is reduced to that of monitoring frequency changes of the maintained patterns. The experimental results show that the incremental mining methods perform much better than the re-miming approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.