Objectives To observe the protective effects of dexmedetomidine (Dex) postconditioning on myocardial ischemia/reperfusion injury (IRI) and to explore its potential molecular mechanisms. Methods One-hundred forty-seven male Sprague-Dawley rats were randomly divided into five groups receiving the different treatments: Sham, ischemia/reperfusion (I/R), Dex, Brusatol, Dex + Brusatol. By the in vivo rat model of myocardial IRI, cardioprotective effects of Dex postconditioning were evaluated by assessing serum CK-MB and cTnI levels, myocardial HE and Tunel staining and infarct size. Furthermore, the oxidative stress-related markers including intracellular ROS level, myocardial tissue MDA level, SOD and GSH-PX activities were determined. Results Dex postconditioning significantly alleviated myocardial IRI, decreased intracellular ROS and myocardial tissue MDA level, increased SOD and GSH-PX activities. Dex postconditioning significantly up-regulated myocardial expression of Bcl-2, down-regulated Bax and cleaved caspase-3 and decreased cardiomyocyte apoptosis rate. furthermores, Dex postconditioning promoted Nrf2 nuclear translocation, increased myocardial expression of Sirt3 and SOD2 and decreased Ac-SOD2. However, brusatol reversed cardioprotective benefits of Dex postconditioning, significantly decreased Dex-induced Nrf2 nuclear translocation and reduced myocardial expression of Sirt3 and SOD2. Conclusions Dex postconditioning can alleviate myocardial IRI by suppressing oxidative stress and apoptosis, and these beneficial effects are at least partly mediated by activating the Nrf2/Sirt3/SOD2 signaling pathway.
ObjectiveMyocardial ischemia/reperfusion injury (IRI) is a common and serious complication in clinical practice. Sevoflurane conditionings have been identified to provide a protection against myocardial IRI in animal experiments, but their true clinical benefits remain controversial. Here, we aimed to analyze the preclinical evidences obtained in animal models of myocardial IRI and explore the possible reasons for controversial clinical benefits.MethodsOur primary outcome was the difference in mean infarct size between the sevoflurane and control groups in animal models of myocardial IRI. After searching the databases of PubMed, Embase, Web of Science, and the Cochrane Library, a systematic review retrieved 37 eligible studies, from which 28 studies controlled comparisons of sevoflurane preconditioning (SPreC) and 40 studies controlled comparisons of sevoflurane postconditioning (SPostC) that were made in a pooled random-effects meta-analysis. In total, this analysis included data from 313 control animals and 536 animals subject to sevoflurane conditionings.ResultsPooled estimates for primary outcome demonstrated that sevoflurane could significantly reduce the infarct size after myocardial IRI whether preconditioning [weighted mean difference (WMD): −18.56, 95% CI: −23.27 to −13.85, P < 0.01; I2 = 94.1%, P < 0.01] or postconditioning (WMD: −18.35, 95% CI: −20.88 to −15.83, P < 0.01; I2 = 90.5%, P < 0.01) was performed. Interestingly, there was significant heterogeneity in effect size that could not be explained by any of the prespecified variables by meta-regression and stratified analysis. However, sensitivity analysis still identified the cardioprotective benefits of sevoflurane conditionings with robust results.ConclusionSevoflurane conditionings can significantly reduce infarct size in in-vivo models of myocardial IRI. Given the fact that there is a lack of consistency in the quality and design of included studies, more well-performed in-vivo studies with the detailed characterization of sevoflurane protocols, especially studies in larger animals regarding cardioprotection effects of sevoflurane, are still required.
Background Available literature indicates that long-term drinkers demand a higher dose of propofol for induction of anesthesia than non-drinkers. However, there is no study having assessed the influence of long-term high-risk drinking (LTHRD) on the effective doses of propofol for successful insertion of gastroscope with sedation. This study was designed to compare the effective doses of propofol for successful insertion of gastroscope between LTHRD and non-drinking (ND) Chinese male patients. Methods Thirty-one LTHRD patients and 29 ND male patients undergoing elective gastroscopy with propofol sedation were enrolled. The modified Dixon’s up-and-down method was applied to determine the calculated median effective dose (ED50) of propofol for successful insertion of gastroscope. Furthermore, the isotonic regression analysis was used to establish the dose–response curve of propofol and assess the effective doses of propofol where 50% (ED50) and 95% (ED95) of gastroscope insertions were successful. Results The calculated ED50 of propofol for successful insertion of gastroscope was 1.55 ± 0.10 mg/kg and 1.44 ± 0.11 mg/kg in the LTHRD and ND patients. The isotonic regression analysis further showed that ED50 and ED95 of propofol for successful insertion of gastroscope was 1.50 mg/kg (95%CI, 1.40–1.63) and 1.80 mg/kg (95%CI, 1.74–1.90) in the LTHRD patients, respectively; 1.40 mg/kg (95% CI, 1.27–1.57) and 1.60 mg/kg (95%CI, 1.56–1.65) in the ND patients. The ED50 of propofol for successful insertion of gastroscope was not significantly different between LTHRD and ND patients. Conclusions This study demonstrates that the difference in the estimated ED50 of propofol for successful insertion of gastroscope between LTHRD and ND Chinese male patients was not statistically significant. Trial registration The study was registered on November 28, 2020 (ChiCTR2000040382) in the Chinese Clinical Trial Registry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.