Chitin and chitosan are natural amino polysaccharides that have exceptional biocompatibility in a wide range of applications such as drug delivery carriers, antibacterial agents and food stabilizers. However, conventional chemical extraction methods of chitin from marine waste are costly and hazardous to the environment. Here we report a study where shrimp waste was co-fermented with Lactobacillus plantarum subsp. plantarum ATCC 14917 and Bacillus subtilis subsp. subtilis ATCC 6051 and chitin was successfully extracted after deproteinization and demineralization of the prawn shells. The glucose supplementation for fermentation was replaced by waste substrates to reduce cost and maximize waste utilization. A total of 10 carbon sources were explored, namely sugarcane molasses, light corn syrup, red grape pomace, white grape pomace, apple peel, pineapple peel and core, potato peel, mango peel, banana peel and sweet potato peel. The extracted chitin was chemically characterized by Fourier Transform Infrared Spectroscopy (FTIR) to measure the degree of acetylation, elemental analysis (EA) to measure the carbon/nitrogen ratio and X-ray diffraction (XRD) to measure the degree of crystallinity. A comparison of the quality of the crude extracted chitin was made between the different waste substrates used for fermentation and the experimental results showed that the waste substrates generally make a suitable replacement for glucose in the fermentation process. Red grape pomace resulted in recovery of chitin with a degree of deacetylation of 72.90%, a carbon/nitrogen ratio of 6.85 and a degree of crystallinity of 95.54%. These achieved values were found to be comparable with and even surpassed commercial chitin.
Mucor circinelloides is a fungus that has been reported to produce ethanol, oil, protein, phosphate and glucosamine, depending on the available nutrients and cultivation conditions. Due to its ability to produce extracellular proteases, it is able to ferment polypeptides and amino acids broken down from various protein sources. In this study, we attempted to culture the Mucor circinelloides on waste substrates to deproteinize prawn shells for the extraction of chitin and subsequently extract chitosan from its fungal cell wall in a concurrent fermentation. The physio-chemical properties of the extracted crustacean chitin and fungal chitosan were determined by Fourier Transform Infrared Spectroscopy (FTIR) and Elemental Analysis (EA). We found that Mucor circinelloides grown on okara and coffee waste behaved as an excellent protease producer and successfully extracted chitin from prawn shells with a degree of deacetylation of 69.94% and 68.82%, respectively, comparable to commercial chitin (70.46%). The fungal chitosan extracted from the fermentation of Mucor circinelloides on red grape pomace substrate showed a degree of deacetylation of 61.05%, comparable to commercial chitosan (64.00%). Our results suggested feasibility of extracting chitosan from seafood waste-streams using cost-effective microbial fermentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.