In this study, an alternative precursor for production of biomass-derived activated carbon was introduced using dragon fruit (Hylocereus costaricensis) peels. Chemical activators such as FeCl3, MgCl2, ZnCl2 were used in the thermal carbonization process to convert carbon into porous carbon (PC). However, heteroatom-doped PC catalysts including N-, B-, and P-doped carbon catalysts in the field of dye removal is highly desirable. Several approaches (XRD, FE-SEM/TEM, XPS, FT-IR, EDS, and elemental mapping) were employed to examine the surface morphology, surface properties, and elemental composition of the PC catalyst. The catalytic activity of metal-free PC catalyst was demonstrated for methylene blue (MB), crystal violet (CV), and Nile blue (NB) in a mild environment The corresponding rate constant (kapp) values were estimated as 0.2473, 0.3248, and 0.3056 min−1, respectively, for MB, CV, and NB, which were significantly greater than those of numerous reports. It exhibited the best catalytic activity and recyclability. Moreover, the approach proposed here could create new opportunities for the remediation of organic dyes in lakes and industrial wastewater.
In this review, ruthenium nanoparticles (Ru NPs)-based functional nanomaterials have attractive electrocatalytic characteristics and they offer considerable potential in a number of fields. Ru-based binary or multimetallic NPs are widely utilized for electrode modification because of their unique electrocatalytic properties, enhanced surface-area-to-volume ratio, and synergistic effect between two metals provides as an effective improved electrode sensor. This perspective review suggests the current research and development of Ru-based nanomaterials as a platform for electrochemical (EC) sensing of harmful substances, biomolecules, insecticides, pharmaceuticals, and environmental pollutants. The advantages and limitations of mono-, bi-, and multimetallic Rubased nanocomposites for EC sensors are discussed. Besides, the relevant EC properties and analyte sensing approaches are also presented. On the basis of these insights, we highlighted recent results for synthesizing techniques and EC environmental pollutant sensors from the perspectives of diverse supports, including graphene, carbon nanotubes, silica, semiconductors, metal sulfides, and polymers. Finally, this work overviews the modern improvements in the utilization of Ru-based nanocomposites on the basis for electroanalytical sensors as well as suggestions for the field's future development.
Metal–organic frameworks (MOFs) are emerging porous coordination polymers constructed by metal ions and organic linkers that have attracted numerous interests in recent years. The large surface area, high porosity, tunable size, and versatile functionality make them promising materials for cargo delivery (i.e., drugs, mRNA, dyes) and sensing (i.e., nucleic acids, small molecules, ions). In addition, the metal ions released from MOFs offer antibacterial and antifungal utility. This review presents a snapshot of current MOF‐related research, highlighting the synthesis approaches, and the various bioapplications of MOFs in terms of biosensing platforms, drug delivery, and antimicrobial agents, exposing potential for future research in the MOF field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.