Activation of G-protein-gated inwardly rectifying potassium channels (Kir3.x) requires the direct binding of phosphorylated phosphatidylinositides (PIPs). Previous studies have established that PIP isoforms activate Kir channels to varying degrees and the binding affinity between PIPs and Kir3.2 appears to be correlated with the level of activation. However, how individual residues contribute to the selectivity of Kir channels toward PIP isoforms is poorly understood. Here, we employ native mass spectrometry (MS) and fluorescent lipid binding assays to gain insight into the contribution of specific Kir3.2 residues binding to phospholipids. For the wild-type channel, we demonstrate the importance of membrane protein samples devoid of co-purified contaminants for protein–lipid binding studies and show that PIP(4,5)P2 cooperatively binds Kir3.2 with a Hill coefficient of 2.7. We also find lipid binding profiles determined from native MS and solution binding assays are in direct agreement. Point mutations of Kir3.2 residues that interact with PIPs distinctly alter selective lipid binding. The K64Q mutation results in altered binding profiles with the highest binding affinity for PIP(4,5)P2 with specific acyl chains. Mutation of R92 to Pro, a residue found in Kir6.2, results in promiscuous binding of PIP isoforms. Kir3.2 with the K194A mutation results in a distinct binding preference for PIP(3,4,5)P3 over other PIP isoforms. Taken together, our results underscore the utmost importance of protein quality for protein–lipid binding studies and show that a single mutation in Kir3.2 can alter the selectivity toward PIPs.
Understanding the molecular driving forces that underlie membrane protein–lipid interactions requires the characterization of their binding thermodynamics. Here, we employ variable-temperature native mass spectrometry to determine the thermodynamics of lipid binding events to the human G-protein-gated inward rectifier potassium channel, Kir3.2. The channel displays distinct thermodynamic strategies to engage phosphatidylinositol (PI) and phosphorylated forms thereof. The addition of a 4′-phosphate to PI results in an increase in favorable entropy. PI with two or more phosphates exhibits more complex binding, where lipids appear to bind two nonidentical sites on Kir3.2. Remarkably, the interaction of 4,5-bisphosphate PI with Kir3.2 is solely driven by a large, favorable change in entropy. Installment of a 3′-phosphate to PI(4,5)P2 results in an altered thermodynamic strategy. The acyl chain of the lipid has a marked impact on binding thermodynamics and, in some cases, enthalpy becomes favorable.
Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.
The G-protein-gated inwardly rectifying potassium channel 4 (Kir3.4) subunit forms functional tetramers. Previous studies have established that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) is required for Kir3.4 function. However, the binding preferences of Kir3.4 for the headgroup and acyl chains of phosphorylated phosphatidylinositides (PIPs) and other lipids are not well understood. Here, the interactions between full-length, human Kir3.4 and lipids are characterized using native mass spectrometry (MS) in conjunction with a soluble fluorescent lipidbinding assay. Kir3.4 displays binding preferences for PIPs, and, in some cases, the degree of binding is influenced by the type of acyl chains. The interactions between Kir3.4 and PIPs are weaker in comparison to full-length, human Kir3.2. The binding of PI(4,5)P 2 modified with a fluorophore to Kir3.2 can be enhanced by other lipids, such as phosphatidylcholine. Introduction of S143T, a mutation that enhances Kir3.4 activity, results in an overall reduction in the channel binding PIPs. In contrast, the D223N mutant of Kir3.4 that mimics the sodium-bound state exhibited stronger binding for PI(4,5)P 2 , particularly for those with 18:0−20:4 acyl chains. Taken together, these results provide additional insight into the interaction between Kir3.4 and lipids that are important for channel function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.