This paper establishes a new multi-unmanned aerial vehicle (multi-UAV) enabled mobile edge computing (MEC) system, where a number of UAVs are deployed as flying edge clouds for large-scale mobile users. In this system, we need to optimize the deployment of UAVs, by considering their number and locations. At the same time, to provide good services for all mobile users, it is necessary to optimize task scheduling. Specifically, for each mobile user, we need to determine whether its task is executed locally or on a UAV (i.e., offloading decision), and how many resources should be allocated (i.e., resource allocation). This paper presents a two-layer optimization method for jointly optimizing the deployment of UAVs and task scheduling, with the aim of minimizing the system energy consumption. By analyzing this system, we obtain the following property: the number of UAVs should be as small as possible under the condition that all tasks can be completed. Based on this property, in the upper layer, we propose a differential evolution algorithm with an elimination operator to optimize the deployment of UAVs, in which each individual represents a UAV's location and the whole population represents an entire deployment of UAVs. During the evolution, we first determine the maximum number of UAVs. Subsequently, the elimination operator gradually reduces the number of UAVs until at least one task cannot be executed under delay constraints. This process achieves adaptive adjustment of the number of UAVs. In the lower layer, based on the given deployment of UAVs, we transform the task scheduling into a 0-1 integer programming problem. Due to the large-scale characteristic of this 0-1 integer programming problem, we propose an efficient greedy algorithm to obtain the near-optimal solution with much less time. The effectiveness of the proposed two-layer optimization method and the established multi-UAV enabled MEC system is demonstrated on ten instances with up to 1000 mobile users.
This paper studies an unmanned aerial vehicle (UAV)-assisted Internet of Things (IoT) data collection system, where a UAV is employed as a data collection platform for a group of ground IoT devices. Our objective is to minimize the energy consumption of this system by optimizing the UAV's deployment, including the number and locations of stop points of the UAV. When using evolutionary algorithms to solve this UAV's deployment problem, each individual usually represents an entire deployment. Since the number of stop points is unknown a priori, the length of each individual in the population should be varied during the optimization process. Under this condition, the UAV's deployment is a variable-length optimization problem and the traditional fixed-length mutation and crossover operators should be modified. In this paper, we propose a differential evolution algorithm with a variable population size, called DEVIPS, for optimizing the UAV's deployment. In DEVIPS, the location of each stop point is encoded into an individual, and thus the whole population represents an entire deployment. Over the course of evolution, differential evolution is employed to produce offspring. Afterward, we design a strategy to adjust the population size according to the performance improvement. By this strategy, the number of stop points can be increased, reduced, or kept unchanged adaptively. In DEVIPS, since each individual has a fixed length, the UAV's deployment becomes a fixed-length optimization problem and the traditional fixed-length mutation and crossover operators can be used directly. The performance of DEVIPS is compared with that of five algorithms on a set of instances. The experimental studies demonstrate its effectiveness.
Evolutionary many-objective optimization has been gaining increasing attention from the evolutionary computation research community. Much effort has been devoted to addressing this issue by improving the scalability of multiobjective evolutionary algorithms, such as Pareto-based, decomposition-based, and indicator-based approaches. Different from current work, we propose a novel algorithm in this paper called AnD, which consists of an angle-based selection strategy and a shift-based density estimation strategy. These two strategies are employed in the environmental selection to delete the poor individuals one by one. Specifically, the former is devised to find a pair of individuals with the minimum vector angle, which means that these two individuals share the most similar search direction. The latter, which takes both the diversity and convergence into account, is adopted to compare these two individuals and to delete the worse one. AnD has a simple structure, few parameters, and no complicated operators. The performance of AnD is compared with that of seven state-of-the-art many-objective evolutionary algorithms on a variety of benchmark test problems with up to 15 objectives. The experimental results suggest that AnD can achieve highly competitive performance. In addition, we also verify that AnD can be readily extended to solve constrained many-objective optimization problems.
This paper studies a multi-user cooperative mobile edge computing offloading (CoMECO) system in a multi-user interference environment, in which delay-sensitive tasks may be executed on local devices, cooperative devices, or the primary MEC server. In this system, we jointly optimize the offloading decision and computation resource allocation for minimizing the total energy consumption of all mobile users under the delay constraint. If this problem is solved directly, the offloading decision and computation resource allocation are generally generated separately at the same time. Note, however, that they are closely coupled. Therefore, under this condition, their dependency is not well considered, thus leading to poor performance. We transform this problem into a bilevel optimization problem, in which the offloading decision is generated in the upper level, and then the optimal allocation of computation resources is obtained in the lower level based on the given offloading decision. In this way, the dependency between the offloading decision and computation resource allocation can be fully taken into account. Subsequently, a bilevel optimization approach, called BiJOR, is proposed. In BiJOR, candidate modes are first pruned to reduce the number of infeasible offloading decisions. Afterward, the upper level optimization problem is solved by ant colony system (ACS). Furthermore, a sorting strategy is incorporated into ACS to construct feasible offloading decisions with a higher probability and a local search operator is designed in ACS to accelerate the convergence. For the lower level optimization problem, it is solved by the monotonic optimization method. In addition, BiJOR is extended to deal with a complex scenario with the channel selection. Extensive experiments are carried out to investigate the performance of BiJOR on two sets of instances with up to 400 mobile users. The experimental results demonstrate the effectiveness of BiJOR and the superiority of the CoMECO system.
In order to support communication and computation cooperation, we propose ME-RAN architecture, which consists of mobile edge cloud (ME) as the computation provision platform and radio access network (RAN) as the communication interface. Cooperative offloading framework is proposed to achieve the following tasks: (1) to increase user equipment' (UE') computing capacity by triggering offloading action, especially for the UE which cannot complete the computation locally; (2) to reduce the energy consumption for all the UEs by considering limited computing and communication resources. Based on above objectives, we formulate the energy consumption minimization problem, which is shown to be a non-convex mixed-integer programming. Firstly, Decentralized Local Decision Algorithm (DLDA) is proposed for each UE to estimate the possible local resource consumption and decide if offloading is in its interest. This operation will reduce the overhead and signalling in the later stage. Then, Centralized decision and resource Allocation algoRithm (CAR) is proposed to conduct the decision making and resource allocation in ME-RAN. Moreover, two low complexity algorithms, i.e., UE with largest saved energy consumption accepted first (CAR-E) and UE with smallest required data rate accepted first (CAR-D) are proposed. Simulations show that the performance of the proposed algorithms is very close to the exhaustive search but with much less complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.