Traditional static anaerobic digestion technology presents the disadvantages of a low gas production rate and long digestion cycle, which is not conducive to the treatment of livestock manure. A 12 m3 multiphase flow anaerobic digester (MFD) was developed in this study to improve the biogas production rate and maintain constant temperature digestion during winters. Full-scale field experiments were conducted on the biogas production rate at different temperatures, the dynamic digestion effects, and the dynamic heating digestion effects of the system at Sichuan, China. A comparison of the dynamic and static digestion results of 50 days indicated that the biogas production for the dynamic digestion (DD) group was 115.22 m3 or 127.1% higher than that of the static digestion (SD) group with the same digestion temperature. The results of the heat transfer performance experiment revealed that the heat transfer rate of the system increased significantly, and the temperature of the biogas slurry increased rapidly. The optimization analysis of the system was based on the experimental results of the relationship between the slurry temperature and biogas production rate, and the economical digestion temperature of the system was proposed and calculated. Different insulation materials or insulation thicknesses have an influence on the economical digestion temperature. Additionally, the economical digestion temperature of the system in which the polystyrene insulation layer with a thickness of 90 mm was used, was found to be 27.2 °C. When digestion temperature was 22.3 °C, the energy efficiency ratio (EER) of dynamic anaerobic digestion system is 1. The advantages of MFD are low biogas production unit cost and high heat and mass transfer rate. However, the disadvantage of high operation energy consumption needs further improvement. And additional energy was required when system digestion temperature below 22.3 °C. The proposed MFD and dynamic anaerobic digestion system can play a significant role in using biomass resources and promoting the development of biogas projects.
Dynamic modelling method for disc indexing cam mechanism was presented based on virtual prototype technology according to the analysis of mechanism feature. Rigid-flexible coupled dynamic model was established by means of Adams, Pro/E and Ansys softwares. Dynamic simulation has been done. It follows the analysis of simulation that effects of input speed, and stroke angle to torsional vibration were illustrated corresponding to dynamics simulation. Dynamic characteristics of different transmission functions commonly used in practical engineering were analyzed in detail. The application principle of transmission functions was presented based on dynamic simulation and analysis results. Construction method of transmission function was presented finally.
The mechanism and characteristic of high speed grinding and the technology and development of high speed grinding were introduced. High efficiency grinding including ultrahigh speed grinding, high efficiency deep grinding, creep deep grinding and abrasive belt grinding was analyzed. The technology about manufacturing the spindle system in super high speed grinding and the other main interrelated technology about grinding were also described.
Cutting force collected by experiment is transformed by continue wavelet in order to overcome the disadvantage that signal processing analyzes single variable. The eigenvector which can reflect tool wear state is extracted from scale-energy matrix based on analysis, and BP neural network is established to predict tool wear. Trained network is used for prediction by unknown sample. Results show that this method can identify and diagnose accurately tool wear state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.