In order to modulate the mechanical properties of gelatin, we previously developed a biodegradable composite composed by tricalcium phosphate and glutaraldehyde crosslinking gelatin (GTG) feasible for surgical manipulation. In this study, we evaluated the in vivo applications of GTG conduit for peripheral nerve repair. The effect of sciatic nerve reconstruction was compared between resorbable permeable GTG conduits and durable impermeable silicone tubes. Traditional methods of assessing nerve recovery following peripheral nerve repair including histomorphometric and electrophysiologic features were conducted in our study. In addition, autotomy score and sciatic function index (SFI) in walking tract analysis were used as additional parameters for assessing the return of nerve function. Twenty-four weeks after sciatic nerve repair, the GTG conduits were harvested. Microscopically, regeneration of nerves was observed in the cross-section at the mid portion of all implanted GTG conduits. The cross-sectional area of regenerated nerve of the GTG group was significant larger than that of the silicone group. In the compound muscle action potentials (CMAP), the mean recovery index of CMAP amplitude was 0.24 +/- 0.02 for the silicone group, 0.41 +/- 0.07 for the GTG group. The mean SFI increased with time in the GTG group during the evaluation period until 24 weeks. Walking tract analysis showed a higher SFI score in the GTG group at both 12 and 24 weeks. The difference reached a significant level at 24 weeks. Thus, the histomorphometric, electrophysiologic, and functional assessments demonstrate that GTG can be a candidate for peripheral nerve repair.
In the present study, NGF, BNDF from the neurotrophin family and IGF-1 were covalently immobilized on gelatin-tricalcium phosphate (GTG) membrane using carbodiimide. We investigated the effects of these growth factors released from the GTG composites on cultured PC12 cells and sciatic nerve regeneration across a 10-mm-long gap in rats. In PC12 cell culture, the total protein content and MTT assay indicated more cell attachment on the composites modified with growth factors. The IGF-1 group showed a higher survival promotion effect on PC12 cells than did BDNF and NGF groups. On the other hand, NGF released from the composite showed the highest level of neuritogenesis for PC12 cells in neurite outgrowth assay. In the animal study, the GTG conduits modified with various growth factors were well tolerated by the host tissue. In the regenerated nerves, the number of the axons per unit area of the BDNF group was significantly higher than that of NGF and GTG groups but similar to that of IGF-1 group. However, the average axon size was the largest in NGF group. This result was in concordance with the neurite outgrowth assay in which NGF showed the highest neuritogenic potential. In the assessment of motor and sensory recovery after nerve repair, conduits modified with various neurotrophic factors showed a more favorable outcome in compound muscle action potential. The BDNF group had a better gastrocnemic muscle weight ratio than blank GTG repair. Nevertheless, the different effects of GTG conduits modified with various neurotrophic factors on functional recovery cannot be simply illustrated in the sciatic function index.
We previously developed a biodegradable composite with potentially good biocompatibility composed by tricalcium phosphate and gluataraldehyde cross-linking gelatin (GTG) with good mechanical property feasible for surgical manipulation. The purpose of this study was to evaluate the feasibility of immobilizing nerve growth factor (NGF) onto the composite (GTG) with carbodiimide (GEN composite). Cultured Schwann cells were seeded onto the GTG and GEN composites. For comparison, GTG membrane soaked in NGF solution without carbodiimide (GN composite) as cross-linking agent was also used to culture Schwann cells. Cell morphology was observed by a scanning electron microscope. Cell survival, cytotoxicity and cellular metabolism on the NGFgrafted GTG membrane were assessed quantitatively in terms of cell protein content, leakage of cytosolic lactate dehydrogenase (LDH) activity and by the well-established MTT assay, respectively. The result of LDH study did not show significant difference among GTG, NGF-modified GTG and control group. This indicated that GTG composite, whether cross-linking with NGF or not, has little cytotoxic effect. Comparing the protein content and MTT assay among GEN, GN composite and control group, the data confirmed more attachment of Schwann cells on GEN composite. Although GTG cross-linking with NGF did not promote Schwann cell proliferation, the techniques we used in this study provided a method to fabricate a novel biomaterial incorporation of Schwann cells and covalently immobilized NGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.