An ultrasensitive electrochemiluminescence (ECL) detection for Cu was explored using the carboxyl functionalized poly(9,9-dioctylfluorenyl-2,7-diyl) (PS-COOH-co-PFO) dots as the signal label without adding any coreactant.
Chaos-based image encryption techniques have recently been extensively studied due to their superior properties in efficiency. However, many of the proposed schemes suffer from known/chosen plaintext attacks as the key stream used in diffusion stage is usually solely determined by the key. This paper suggests a chaos-based symmetric image cipher with a plaintext-related key stream generation mechanism. In the diffusion stage, the state variables of Lorenz system are selected according to the plain pixel. As a result, the quantified key stream is related to both the key and the plain image, which makes known/chosen plaintext attack practically infeasible. Moreover, compared with 1D chaotic maps that commonly employed in existing ciphers, the Lorenz system has more complicated dynamical property and number of state variables, which further enhance the security of the cryptosystem. Thorough security tests are carried out with detailed analysis, demonstrating the high security of the new scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.