In this paper, a fault diagnosis method based on symmetric polar coordinate image and Fuzzy C-Means clustering algorithm is proposed to solve the problem that the fault signal of axial piston pump is not intuitive under the time-domain waveform diagram. In this paper, the sampled vibration signals of axial piston pump were denoised firstly by the combination of ensemble empirical mode decomposition and Pearson correlation coefficient. Secondly, the data, after noise reduction, was converted into images, called snowflake images, according to symmetric polar coordinate method. Different fault types of axial piston pump can be identified by observing the snowflake images. After that, in order to evaluate the research results objectively, the obtained images were converted into Gray-Level Cooccurrence Matrixes. Their multiple eigenvalues were extracted, and the eigenvectors consisting of multiple eigenvalues were classified by Fuzzy C-Means clustering algorithm. Finally, according to the accuracy of classification results, the feasibility of applying the symmetric polar coordinate method to axial piston pump fault diagnosis has been validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.