Bortezomib, a proteasome inhibitor, has been clinically approved for the treatment of myeloma and lymphoma. Here, we report a differential effect of bortezomib on apoptosis in four hepatocellular carcinoma (HCC) cell lines and identify the major molecular event that determines sensitivity. Although bortezomib inhibited proteasome activity to a similar extent in all HCC cell lines, it showed differential effects on their viability: Huh-7 (IC 50 196 nmol/L), Sk-Hep1 (IC 50 180 nmol/L), Hep3B (IC 50 112 nmol/L), and resistant PLC5 (IC 50 >1,000 nmol/L). Bortezomib caused cell cycle arrest at G 2 -M phase in all HCC cells tested whereas apoptotic induction was found only in sensitive cells but not in PLC5 cells. No significant bortezomib-induced NF-KB changes were noted in Huh-7 and PLC5. Bortezomib down-regulated phospho-Akt (P-Akt) in a dose-and time-dependent manner in all sensitive HCC cells whereas no alterations of P-Akt were found in PLC5. Down-regulation of Akt1 by small interference RNA overcame the apoptotic resistance to bortezomib in PLC5 cells, but a constitutively activated Akt1 protected Huh-7 cells from bortezomib-induced apoptosis. Furthermore, bortezomib showed suppression of tumor growth with downregulation of P-Akt in Huh-7 tumors but not in PLC5 tumors. Down-regulation of P-Akt represents a major molecular event of bortezomib-induced apoptosis in HCC cell lines and may be a biomarker for predicting clinical response to HCC treatment. Targeting Akt signaling overcomes drug resistance to bortezomib in HCC cells, which provides a new approach for the combinational therapy of HCC. [Cancer Res 2008; 68(16):6698-707]
Purpose:Brain metastases from renal cell carcinoma (RCC) have been successfully treated with stereotactic radiosurgery (SRS). Metastases to extra-cranial sites may be treated with similar success using stereotactic body radiation therapy (SBRT), where image-guidance allows for the delivery of precise high-dose radiation in a few fractions. This paper reports the authors’ initial experience with image-guided SBRT in treating primary and metastatic RCC.Materials and methods:The image-guided Brainlab Novalis stereotactic system was used. Fourteen patients with 23 extra-cranial metastatic RCC lesions (orbits, head and neck, lung, mediastinum, sternum, clavicle, scapula, humerus, rib, spine and abdominal wall) and two patients with biopsy-proven primary RCC (not surgical candidates) were treated with SBRT (24-40 Gy in 3-6 fractions over 1-2 weeks). All patients were immobilised in body cast or head and neck mask. Image-guidance was used for all fractions. PET/CT images were fused with simulation CT images to assist in target delineation and dose determination. SMART (simultaneous modulated accelerated radiation therapy) boost approach was adopted. 4D-CT was utilised to assess tumour/organ motion and assist in determining planning target volume margins.Results:Median follow-up was nine months. Thirteen patients (93%) who received SBRT to extra-cranial metastases achieved symptomatic relief. Two patients had local progression, yielding a local control rate of 87%. In the two patients with primary RCC, tumour size remained unchanged but their pain improved, and their renal function was unchanged post SBRT. There were no significant treatment-related side effects.Conclusion:Image-guided SBRT provides excellent symptom palliation and local control without any significant toxicity. SBRT may represent a novel, non-invasive, nephron-sparing option for the treatment of primary RCC as well as extra-cranial metastatic RCC.
The growth and chemosensitivity of human carcinomas with high GR contents may be affected by GC. However, in light of the heterogeneous and even contradictive effects of GC on these cells, routine examination of GR contents of human carcinoma tissues may not be clinically useful until other markers that help predict the ultimate effect of GC on individual patients are identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.