This study aimed to evaluate the hypocholesterolaemic property of milk-kefir and soyamilk-kefir. Male hamsters were fed on a cholesterol-free or cholesterol-enriched diet containing 10 % skimmed milk, milk-kefir, soyamilk or soyamilk-kefir for a period of 8 weeks. The soyamilk, milk-kefir and soyamilk-kefir diets all tended towards a lowering of serum triacylglycerol and total cholesterol concentrations, and a reduction of cholesterol accumulation in the liver, the decrease in serum cholesterol concentration being mainly in the non-HDL fraction. The soyamilk-kefir diet led to a significant increase in the faecal excretion of neutral sterols and bile acids compared with the other two diets. The soyamilk-kefir diet also elicited a significant decrease in the serum ratio of non-HDL-cholesterol to HDL-cholesterol, compared with the control, than was the case for the other diets. These findings demonstrate that soyamilk-kefir may be considered to be among the more promising food components in terms of preventing CVD through its hypocholesterolaemic action.
Food allergy is now recognized as a worldwide problem, and like other atopic disorders its incidence appears to be increasing. Kefir is reported to possess the ability to reduce intestinal permeation of food antigens; however, no experimental study has clearly evaluated the relationships between kefir consumption, allergenspecific IgE response, and intestinal microflora. The aim of this study was to evaluate the effect of oral consumption of milk kefir and soymilk kefir on in vivo IgE and IgG1 production induced by ovalbumin (OVA) in mice. The effects of kefir administration on the murine intestinal microflora were also examined. Oral administration of milk kefir and soymilk kefir for 28 days significantly increased the fecal populations of bifidobacteria and lactobacilli, while it significantly decreased those of Clostridium perfringens. Milk kefir and soymilk kefir also significantly decreased the serum OVA-specific IgE and IgG1 levels for both groups, but not those of the IgG2a analogues. Consumption of milk kefir and soymilk kefir suppressed the IgE and IgG1 responses and altered the intestinal microflora in our supplemented group, suggesting that milk kefir and soymilk kefir may be considered among the more promising food components in terms of preventing food allergy and enhancement of mucosal resistance to gastrointestinal pathogen infection. INTRODUCTIONFood allergy is characterized by an abnormal immunological reactivity to food proteins in certain genetically predisposed individuals. This response generates a wide variety of symptoms and clinical manifestations expressed in several affected organ systems such as the skin, respiratory tract, and gastrointestinal tract. 1 Food allergy is now recognized as a worldwide problem and, like other atopic disorders, it appears to be increasing. The prevalence of food allergy is greatest in the first few years of life, affecting about 6% of infants under 3 years of age but decreasing over the first decade. 2 Recent estimates suggest that nearly 4% of adults suffer food allergies, a prevalence much higher than appreciated in the past. 3 Further, food allergy remains a leading cause of anaphylaxis treated in emergency departments in a number of countries, and the public has become increasingly aware of the problem. As allergenspecific IgE is directly involved in the mediation of many allergic reactions, development of a method for inhibiting IgE production is a useful approach for preventing allergic diseases. Dietary studies have suggested that long-term consumption of yogurt can reduce some of the clinical symptoms of allergy in
The collagen-binding protein gene cnb was cloned from the probiotic Lactobacillus reuteri strain Pg4. The DNA sequence of the cnb gene (792 bp) has an open reading frame encoding 263 amino acids with a calculated molecular weight of 28.5 kDa. The cnb gene was constructed so as to constitutively express under the control of the Lactococcus lactis lacA promoter and was transformed into Lactobacillus casei ATCC 393, a strain isolated from dairy products with poor ability to adhere to intestinal epithelial cells. Confocal immunofluorescence microscopic and flow cytometric analysis of the transformed strain Lb. casei pNZ-cnb indicated that Cnb was displayed on its cell surface. Lb. casei pNZ-cnb not only showed a higher ability to adhere to Caco-2 cells but also exhibited a higher competition ability against Escherichia coli O157:H7 and Listeria monocytogenes adhesion to Caco-2 cells than Lb. casei ATCC 393.
The aim of this study was to display a rumen bacterial β-glucanase on the cell surface of a probiotic Lactobacillus reuteri strain. The β-glucan degrading ability and the adhesion capability of the genetically modified strain were evaluated. The β-glucanase (Glu) from Fibrobacter succinogenes was fused to the C-terminus of collagen-binding protein (Cnb) from L. reuteri and then expressed by L. reuteri Pg4 as a recombinant Cnb-Glu-His(6) fusion protein. Confocal immunofluorescence microscopy and flow cytometric analysis of the transformed strain L. reuteri pNZ-cnb/glu demonstrated that Cnb-Glu-His(6) fusion protein was displayed on its cell surface. In addition, L. reuteri pNZ-cnb/glu acquired the capacity to break down barley β-glucan and showed higher adhesion capability, in comparison with the parental strain L. reuteri Pg4. To the best of the authors' knowledge, this is the first report of successful display of fibrolytic enzymes on the cell surface of intestinal lactobacilli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.