In this paper, we discuss a new type of mean-field anticipated backward stochastic differential equation with a time-delayed generator (MF-DABSDEs) which extends the results of the anticipated backward stochastic differential equation to the case of mean-field limits, and in which the generator considers not only the present and future times but also the past time. By using the fixed point theorem, we shall demonstrate the existence and uniqueness of the solutions to these equations. Finally, we shall establish a comparison theorem for the solutions.
In this article, we investigate a class of Caputo fractional stochastic differential equations driven by fractional Brownian motion with delays. Under some novel assumptions, the averaging principle of the system is obtained. Finally, we give an example to show that the solution of Caputo fractional stochastic differential equations driven by fractional Brownian motion with delays converges to the corresponding averaged stochastic differential equation.
In this paper, we focus on a family of backward stochastic differential equations (BSDEs) with subdifferential operators that are driven by infinite-dimensional martingales. We shall show that the solution to such infinite-dimensional BSDEs exists and is unique. The existence and uniqueness of the solution are established using Yosida approximations. Furthermore, as an application of the main result, we shall show that the backward stochastic partial differential equation driven by infinite-dimensional martingales with a continuous linear operator has a unique solution under the special condition that the Ft-progressively measurable generator F of the model we proposed in this paper equals zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.