Native American Artemia franciscana has become an introduced species in the Old World due to the rapid development of the aquaculture industry in Eurasia. The recent colonisation of A. franciscana in Mediterranean regions and Asia has been well documented, but Australia is a continent where the dispersal of this species is not well understood. In the present study, we sequenced the cytochrome oxidase subunit I (COI) and examined the phylogenetic relationships, haplotype network and population genetic structure of Artemia from four geographical localities in Australia and two American native localities. Our results confirmed the colonisation of Australia in all four localities by A. franciscana. First, we document the occurrence of Artemia in Mulgundawa and St Kilda localities in Australia. The Dampier population is a monomorphic population, but there is high genetic variation and a degree of demographic expansion observed in other introduced A. franciscana populations in Australia. This observation suggests an interaction between environmental conditions and adaptive potentials of A. franciscana. Our findings imply that populations from St Kilda and Port Hedland might have originated from a San Francisco Bay source, while the two other locations resulted from admixture between Great Salt Lake and San Francisco Bay sources, perhaps resulting from secondary introduction events.
Due to the rapid developments in the aquaculture industry, Artemia franciscana, originally an American species, has been introduced to Eurasia, Africa and Australia. In the present study, we used a partial sequence of the mitochondrial DNA Cytochrome Oxidase subunit I (mt-DNA COI) gene and genomic fingerprinting by Inter-Simple Sequence Repeats (ISSRs) to determine the genetic variability and population structure of Artemia populations (indigenous and introduced) from 14 different geographical locations in Western Asia. Based on the haplotype spanning network, Artemia urmiana has exhibited higher genetic variation than native parthenogenetic populations. Although A. urmiana represented a completely private haplotype distribution, no apparent genetic structure was recognized among the native parthenogenetic and invasive A. franciscana populations. Our ISSR findings have documented that despite that invasive populations have lower variation than the source population in Great Salt Lake (Utah, USA), they have significantly revealed higher genetic variability compared to the native populations in Western Asia. According to the ISSR results, the native populations were not fully differentiated by the PCoA analysis, but the exotic A. franciscana populations were geographically divided into four genetic groups. We believe that during the colonization, invasive populations have experienced substantial genetic divergences, under new ecological conditions in the non-indigenous regions.
The taxonomic identity of an unknown Artemia population inhabiting the Al Wathba Wetland Reserve in Abu Dhabi, U.A.E., was determined using phylogenetic analysis of the mitochondrial marker Cytochrome Oxidase Subunit 1 (COI). The results showed that the examined population belongs to an exotic invasive species, Artemia franciscana. Based on the distribution pattern of haplotypes, the studied population could possibly have originated from that inhabiting the Great Salt Lake (Utah, U.S.A.).
The complete mitochondrial genome of Artemia sinica was obtained using the next-generation sequencing (NGS) method. The mitochondrial genome is a circular molecule of 15,689 bp in length, with the typical structure of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs) and 2 ribosomal RNA genes, and a non-coding control region (CR). The base composition is 31.53% A, 18.99% C, 16.50% G, and 32.98% T, with an A þ T content of 64.51%. All tRNAs have a cloverleaf structure excepting tRNA-Ser 1 , that represents the D-loop structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.