Current density is a key factor of plasma electrolytic oxidation process. Its influences on structure, mechanical, and tribological characteristics of ceramic coatings on ZK60 Mg alloy by pulsed bipolar microplasma oxidation in Na(3)PO(4) solution were studied in this paper. Thickness, structure, composition, mechanical property, and tribological characteristics of the coatings were studied by eddy current coating thickness gauge, scanning electron microscope (SEM), X-ray diffraction (XRD), nanoindentation measurements, and ball-on-disk friction testing. The results show that all the coatings prepared under different current densities are composed of MgO phase. The amount of MgO phase, thickness and friction coefficient of the coatings increased with the increasing current density. Among three ceramic coatings produced under three current densities, the coating produced under the current density of 7 A/dm(2) got the highest nanohardness and lowest wear rate with the value of 1.7 GPa and 1.27 x 10(-5) mm(3)/Nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.