Due to many differences in the material, geometry, and assembly method of the commercially available beam-end-connectors in steel storage pallet racks (SPR), no common numerical model has been universally accepted to accurately predict the M–θ behavior of complex semirigid connections so far. Despite the fact that the finite element method (FEM) and physical experiment have been used to obtain the mechanical performance of beam-to-column connections (BCCs), those methods have the disadvantages of high computational complexity and test cost. Taking, for example, the boltless steel connections, this paper proposes a data-driven simulation model (DDSM) that combines the experimental test, FEM, and support vector machine (SVM) techniques to determine the bending strength of BCCs by means of data mining from the engineering database. First, a three-dimensional (3D) finite element (FE) model was generated and calibrated against the experimental results. Subsequently, the validated FE model was further extended to perform parametric analysis and enrich the engineering case base of structural characterization of BCCs. Based on the M–θ curve of the FE simulation, support vector machines (SVMs) were trained to predict the flexural rigidity of beam-to-column joints. The predictive power of the SVM algorithms is estimated by comparison with traditional ANN models via the root mean square error (RMSE), the mean absolute percentage error (MAPE), and the correlation coefficient R. The results obtained indicate that the SVM algorithms slightly outperform the ANN algorithms, although both of them are in good agreement with FEM and physical test. From the point of view of engineering application, DDM is able to provide much more effective help for structural engineers to make rapid decisions on steel members design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.