Smart city has obtained increasing attention from both academic and industry which has the potential to improve human living standards. A smart city consists of a great number of smart devices which are generating large amounts of data and emerging applications all the time. However, the computing capacity of smart devices are limited. Fortunately, the emergence of MEC can solve the above problem. However, the resources of edge servers in MEC are limited and the capabilities of edge servers are heterogeneous. It is important to improve the average resource utilization of all edge servers and keep load balancing of edge server cluster simultaneously. On the other hand, quite a few numbers of applications are delay-sensitive, it is necessary to ensure the security of these applications. In this paper, we consider joint optimization of mobile device and edge server in MEC-enabled smart city, improving the overall performance of the system. Technically, a new multi-objective computation offloading method is implemented to reduce time consumption, energy consumption, and keep load balancing of edge servers, as well as increase average resource utilization of edge servers while meeting the deadline constraint of delay-sensitive applications. Sufficient experiments have been conducted to prove the effectiveness and superiority of our proposed method in different scenarios.
Building EXODUS software is used to calculate the evacuation times and simulate the evacuation behavior. The results and laws are compared with those from a 2D Cellular Automaton (CA) random evacuation model developed by our group. EXODUS simulation is more reasonable than the CA simulation in the case of evacuation from a simple room, but CA model is more reasonable in the case of evacuation in a long corridor after bottlenecks. As far as the evacuation from a simple room with a single exit is concerned, there is a critical value of exit width. The value of exit width should be bigger than the critical value in order to ensure a dilute pedestrian flow, but the value doesn't need to be too big. The bigger the original occupant density, the longer the evacuation time is. They can be fitted as a linear relationship. The principle of taking the shortest route is not always useful. If the distribution of occupant density is not uniform at each building part, balancing the use efficiency of each exit should be the main principle in order to improve evacuation efficiency. All the above laws can be obtained both from EXODUS and the CA model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.