Acoustic agglomerations have increasingly attracted widespread attention as a cost-effective and environmentally friendly approach for fog removal and weather modification. In this study, research on precipitation interference and the agglomeration performance of droplet aerosols under large-scale acoustic waves was presented. In total, 49 field experiments in the source region of the Yellow River (SRYR) in the summer of 2019 were performed to reveal the influences of acoustic waves on precipitation, such as the radar reflectivity factor (Z), rain rate (R), and raindrop size distribution (DSD). A monitoring system that consisted of rain gauges and raindrop spectrometers was employed to monitor near-ground rainfall within a 5 km radius of the field site. The ground-based observations showed that acoustic waves could significantly affect the rainfall distribution and microstructure of precipitation particles. The average values of rainfall increased by 18.98%, 10.61%, and 8.74% within 2 km, 3 km and 5 km of the operation center with acoustic application. The changing trend of microphysical parameters of precipitation was roughly in line with variation of acoustic waves for stratiform cloud. Moreover, there was a good quadratic relationship between the spectral parameters λ and μ. Raindrop kinetic energy (eK) and the radar reflectivity factor (Z) both exhibited a power function relationship with the rain rate (R).
This study analyzed the microphysical characteristics of stratiform and convective precipitation over an inland arid region of Qinghai–Tibet Plateau in summer for the first time. The observed precipitation data were from the OTT Parsivel2 laser raindrop spectrometer and the raindrop size distribution can be described by a gamma distribution and a general exponential distribution. The results indicate that: (1) compared to the exponential distribution, the gamma distribution is the better function with which to describe the raindrop size distribution in this region; (2) the raindrop sizes are mainly below 1 mm, and the raindrop sizes which contribute most to the rainfall intensity are below 2 mm for stratiform precipitation and convective precipitation; (3) the mean values of microphysical parameters, e.g., rainfall intensity, radar reflectivity factor, and liquid water content, are higher for convective precipitation than stratiform precipitation; and (4) the standard Z–R relationship underestimates the radar reflectivity factor in this region. Overall, the obtained results will enhance our understanding and facilitate future studies regarding the microphysical characteristics of precipitation in such regions. For example, the obtained Z–R relationship can be a reference for estimating the radar reflectivity factor in this region with higher accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.