Question generation systems aim to generate natural language questions that are relevant to a given piece of text, and can usually be answered by just considering this text. Prior works have identified a range of shortcomings (including semantic drift and exposure bias) and thus have turned to the reinforcement learning paradigm to improve the effectiveness of question generation. As part of it, different reward functions have been proposed. As typically these reward functions have been empirically investigated in different experimental settings (different datasets, models and parameters) we lack a common framework to fairly compare them. In this paper, we first categorize existing rewards systematically. We then provide such a fair empirical evaluation of different reward functions (including three we propose here) in a common framework. We find rewards that model answerability to be the most effective.
CCS CONCEPTS• Information systems → Question answering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.