A hybrid core-shell structured nanowire is proposed for a long-term stable electron source based on an isolated platinum/multi-walled carbon nanotube (Pt/MWCNT). This hybrid nanowire is prepared by growing a Pt shell on a metallic MWCNT through a field-emission-induced deposition (FEID) method. An in situ field emission (FE) platform was constructed inside a scanning electron microscope (SEM) equipped with two nanorobotic manipulators (NRMs) for the preparation and testing of the hybrid nanowire. An in situ fatigue test was conducted with high current intensity (500 nA) to show the influence of the Pt shell. Compared with the pristine bare MWCNT, our hybrid-nanowire-based electron source has a lifetime of hundreds of times longer and can work continuously for up to 48 h under relatively high pressure (3.6×10-3 Pa) without having an apparent change in its structure or emission currents, demonstrating good stability and tolerance to poor working conditions. The anomalous long-term stability is attributed mainly to the shielding of oxygen by Pt from the carbon shells and less heating due to the work function lowering by Pt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.