Due to the existing large-scale grid-connected photovoltaic (PV) power generation installations, accurate PV power forecasting is critical to the safe and economical operation of electric power systems. In this study, a hybrid short-term forecasting method based on the Variational Mode Decomposition (VMD) technique, the Deep Belief Network (DBN) and the Auto-Regressive Moving Average Model (ARMA) is proposed to deal with the problem of forecasting accuracy. The DBN model combines a forward unsupervised greedy layer-by-layer training algorithm with a reverse Back-Projection (BP) fine-tuning algorithm, making full use of feature extraction advantages of the deep architecture and showing good performance in generalized predictive analysis. To better analyze the time series of historical data, VMD decomposes time series data into an ensemble of components with different frequencies; this improves the shortcomings of decomposition from Empirical Mode Decomposition (EMD) and Ensemble Empirical Mode Decomposition (EEMD) processes. Classification is achieved via the spectrum characteristics of modal components, the high-frequency Intrinsic Mode Functions (IMFs) components are predicted using the DBN, and the low-frequency IMFs components are predicted using the ARMA. Eventually, the forecasting result is generated by reconstructing the predicted component values. To demonstrate the effectiveness of the proposed method, it is tested based on the practical information of PV power generation data from a real case study in Yunnan. The proposed approach is compared, respectively, with the single prediction models and the decomposition-combined prediction models. The evaluation of the forecasting performance is carried out with the normalized absolute average error, normalized root-mean-square error and Hill inequality coefficient; the results are subsequently compared with real-world scenarios. The proposed approach outperforms the single prediction models and the combined forecasting methods, demonstrating its favorable accuracy and reliability.
Automatic seizure detection technology can automatically mark the EEG by using the epileptic detection algorithm, which is helpful to the diagnosis and treatment of epileptic diseases. This paper presents an EEG classification framework based on the denoising sparse autoencoder. The denoising sparse autoencoder (DSAE) is an improved unsupervised deep neural network over sparse autoencoder and denoising autoencoder, which can learn the closest representation of the data. The sparsity constraint applied in the hidden layer of the network makes the expression of data as sparse as possible so as to obtain a more efficient representation of EEG signals. In addition, corrupting operation used in input data help to enhance the robustness of the system and make it suitable for the analysis of non-stationary epileptic EEG signals. In this paper, we first imported the pre-processed training data to the DSAE network and trained the network. A logistic regression classifier was connected to the top of the DSAE. Then, put the test data into the system for classification. Finally, the output results of the overall network were post-processed to obtain the final epilepsy detection results. In the two-class (nonseizure and seizure EEGs) problem, the system has achieved effective results with the average sensitivity of 100%, specificity of 100%, and recognition of 100%, showing that the proposed framework can be efficient for the classification of epileptic EEGs.
Photovoltaic output is affected by solar irradiance, ambient temperature, instantaneous cloud cluster, etc., and the output sequence shows obvious intermittent and random features, which creates great difficulty for photovoltaic output prediction. Aiming at the problem of low predictability of photovoltaic power generation, a combined photovoltaic output prediction method based on variational mode decomposition (VMD), maximum relevance minimum redundancy (mRMR) and deep belief network (DBN) is proposed. The method uses VMD to decompose the photovoltaic output sequence into modal components of different characteristics, and determines the main characteristic factors of each modal component by mRMR, and the DBN model is used to fit the modal components and the corresponding characteristic factors, then the predicted results of each modal component is superimposed to obtain the predicted value of the photovoltaic output. By using the data of a certain photovoltaic power station in Yunnan for comparative experiments, it is found that the model proposed in this paper improves the prediction accuracy of photovoltaic output.
Abstract. Fault diagnosis expert system obtains the operation of power grid by monitoring the change of dynamic database. While all kinds of measurement, switching value and a part of status records and documents about the status of power grid operation transferred by fault information system and SCADA system are stored in the dynamic database. As the change of power grid operation state and the passage of time, we update the contents in the database. Once the failure and abnormality occur, the fault diagnosis expert system is started, so we can judge whether start core diagnostic program by starting detection. If the program starts, the whole diagnosis process should be under the unified dispatching. We can obtain the related information about the fault diagnosis continuously from dynamic database so as to form our own information chain and begin to carry out the reasoning. Finally, we make the diagnosis results be displayed to the dispatcher in a specified format so as to make the diagnosis results be as the reference of fault recovery processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.