Mitochondrial DNA (mtDNA) mutations have been associated with Leber’s hereditary optic neuropathy (LHON) and their pathophysiology remains poorly understood. In this study, we investigated the pathophysiology of a LHON susceptibility allele (m.3394T>C, p.30Y>H) in the Mitochondrial (MT)-ND1 gene. The incidence of m.3394T>C mutation was 2.7% in the cohort of 1741 probands with LHON. Extremely low penetrances of LHON were observed in 26 pedigrees carrying only m.3394T>C mutation, while 21 families bearing m.3394T>C, together with m.11778G>A or m.14484T>C mutation, exhibited higher penetrance of LHON than those in families carrying single mtDNA mutation(s). The m.3394T>C mutation disrupted the specific electrostatic interactions between Y30 of p.MT-ND1 with the sidechain of E4 and backbone carbonyl group of M1 of NDUFA1 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1) of complex I, thereby altering the structure and function of complex I. We demonstrated that these cybrids bearing only m.3394T>C mutation caused mild mitochondrial dysfunctions and those harboring both m.3394T>C and m.11778G>A mutations exhibited greater mitochondrial dysfunctions than cybrids carrying only m.11778G>A mutation. In particular, the m.3394T>C mutation altered the stability of p.MT-ND1 and complex I assembly. Furthermore, the m.3394T>C mutation decreased the activities of mitochondrial complexes I, diminished mitochondrial ATP levels and membrane potential and increased the production of reactive oxygen species in the cybrids. These m.3394T>C mutation-induced alterations aggravated mitochondrial dysfunctions associated with the m.11778G>A mutation. These resultant biochemical defects contributed to higher penetrance of LHON in these families carrying both mtDNA mutations. Our findings provide new insights into the pathophysiology of LHON arising from the synergy between mitochondrial ND1 and ND4 mutations.
BackgroundClinically mild encephalitis/encephalopathy with a reversible splenial lesion (MERS) is a clinico-radiological syndrome characterized by transient mild symptoms of encephalopathy and a reversible lesion in the splenium of the corpus callosum on magnetic resonance imaging (MRI). It is often triggered by infection. The common pathogens of MERS are viruses, especially influenza virus. However, Mycoplasma pneumoniae (M.pneumoniae) are relatively rare pathogens for MERS.Case presentationHere we report two paediatric cases of M.pneumoniae infection-induced MERS. The diagnosis of M.pneumoniae infection was established based on polymerase chain reaction (PCR) and specific serum antibodies (IgM). Both of the two patients presented with mild encephalopathy manifestations and recovered completely within a few days. The initial MRI showed a lesion in the central portion of the splenium of the corpus callosum, which completely resolved on the seventh and eighth day after admission for case 1 and case 2. Lumbar puncture was performed in both patients, which revealed no pleocytosis. In case 1, the patient had hyponatremia, peripheral facial nerve paralysis, and rash. To the best of our knowledge, it is the first MERS case associated with peripheral nerve damage. In case 2, interleukin-6(IL-6) was moderately increased in the cerebrospinal fluid (CSF). It suggested that IL-6 may play a role in the pathogenesis of M.pneumoniae-induced MERS.ConclusionOur study enriches the available information on the pathogens of MERS and provides valuable data for better understanding of this syndrome.
Hippocampus endogenous neurogenesis has been postulated to play a favorable role in brain restoration after injury. However, the underlying molecular mechanisms have been insufficiently deciphered. Here we investigated the potential regulatory capacity of MAPK/ERK signaling on neurogenesis and the associated cognitive performance in prenatally infected neonatal rats. From our data, intrauterine infection could induce hippocampal neuronal apoptosis and promote endogenous repair by evoking neural stem cell proliferation and survival. We also found intrauterine infection could induce increased levels of p-ERK, p-CREB and BDNF, which might be responsible for the potential endogenous rescue system. Furthermore, inhibition of MAPK/ERK signaling could aggravate hippocampal neuronal apoptosis, decrease neurogenesis, and impair the offspring's cognitive performances and could also down-regulate the levels of p-ERK, p-CREB and BDNF. Our data strongly suggest that the activation of MAPK/ERK signaling may play a significant role in promoting survival of newly generated neural stem cells via an anti-apoptotic mechanism, which may be particularly important in endogenous neuroprotection associated with cognitive performance development in prenatally infected rats.
Evidence from experimental and clinical studies implicates immuno-inflammatory responses as playing an important role in epilepsy-induced brain injury. Captopril, an angiotensin-converting enzyme inhibitor (ACEi), has previously been shown to suppress immuno-inflammatory responses in a variety of neurological diseases. However, the therapeutic potential of captopril on epilepsy remains unclear. In the present study, Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to establish a status epilepticus. Captopril (50 mg/kg, i.p.) was administered daily following the KA administration from day 3 to 49. We found that captopril efficiently suppressed the KA-induced epilepsy, as measured by electroencephalography. Moreover, captopril ameliorated the epilepsy-induced cognitive deficits, with improved performance in the Morris water maze, Y-maze and novel objective test. RNA sequencing (RNA-seq) analysis indicated that captopril reversed a wide range of epilepsy-related biological processes, particularly the glial activation, complement system-mediated phagocytosis and the production of inflammatory factors. Interestingly, captopril suppressed the epilepsy-induced activation and abnormal contact between astrocytes and microglia. Immunohistochemical experiments demonstrated that captopril attenuated microglia-dependent synaptic remodeling presumably through C3–C3ar-mediated phagocytosis in the hippocampus. Finally, the above effects of captopril were partially blocked by an intranasal application of recombinant C3a (1.3 μg/kg/day). Our findings demonstrated that captopril reduced the occurrence of epilepsy and cognitive impairment by attenuation of inflammation and C3-mediated synaptic phagocytosis. This approach can easily be adapted to long-term efficacy and safety in clinical practice. Graphical Abstract
Up to now, SCN9A mutations encoding Nav1.7 have been limited to inherited pain syndromes. A few of pathogenic SCN9A mutations with or without SCN1A mutations have been identified in epileptic patients. Here, we report two heterozygous SCN9A mutations with no SCN1A mutations, which are associated with variable epilepsy phenotypes and explored the possibility of SCN9A contributing to a multifactorial etiology for epilepsy. Our findings suggest that the two SCN9A mutations (c.980G>A chr2:167149868 p.G327E; c.5702_5706del chr2:167055410 p.I1901fs) should be regarded as pathogenic mutations. Two heterozygous mutations of SCN9A are associated with a wide clinical spectrum of seizure phenotypes including simple febrile seizures, afebrile seizures, generalized tonic-clonic seizure, myoclonic or tonic seizures, and focal clonic seizures. Patients with deletion mutations tend to be associated with more severe seizure type than missense mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.