High temperature superconducting (HTS) conductors, represented by Rare Earth-Barium-Copper-Oxide (REBCO) conductors, are promising for high energy and high field superconducting applications. In practical applications, however, the HTS conductors experience different stresses and strains, including residual stresses due to thermal mismatch and tensile stresses due to Lorentz forces, resulting in some circumstances to a reduction in the load-carrying capacity as well as the risk of degradation in conductor critical current. In this study a mixeddimensional high-aspect-ratio laminated composite finite element model for REBCO conductor is developed for stress and strain analyses in the processes of fabricating and cooling, as well as tensile testing. The model includes all the major constituent layers of a typical REBCO conductor and is experimentally validated. First, the thermal residual stresses and strains accumulated during the fabrication and cooling processes are analyzed by a multi-step modeling method that emulates the manufacturing process. Then, with the residual stresses and strains as initial stresses and strains, the mechanical behavior under a tensile load is studied. Lastly, a phenomenological critical current-strain model based on the Ekin power-law formula and the Weibull distribution function is combined with the mixed-dimensional conductor model to predict the strain dependence behavior of critical current in the reversible and irreversible degradation strain ranges. Simulation results show that the multi-step modeling is an effective method for stress and strain analyses of REBCO conductors during the fabrication and cooling processes and under and tensile loads. Compressive thermal residual stress generated on the REBCO layer during fabrication and cooling strongly affects the subsequent mechanical and current-carrying properties. Stress-strain curves generated by tensile loads are analyzed and experimentally validated at both the conductor and constituent-layer levels. Simulation results for the strain dependence of critical current are in good agreement with experiment data in both the reversible and irreversible degradation stages.
Rare earth-barium-copper-oxide (REBCO) coated conductors are promising conductors for high energy, high field and high temperature superconducting applications. In the case of epoxy-impregnated REBCO superconducting coils, however, excessive transverse stresses generated from winding, cooling, and Lorentz forces on the REBCO conductors can cause delamination, resulting in reduction in the load-carrying capacity as well as significant degradation in the coil's critical current. In this study, the stresses and strains, and delamination in a REBCO conductor are analyzed via a mixed-dimensional finite element method (FEM) based on the cohesive zone model (CZM). The mixed-dimensional method models any number of laminated high-aspect-ratio thin layers in a composite as stacked two-dimensional (2D) surfaces, thus, resolving the thickness-dependent meshing and computational problems in modeling such composites with full three-dimensional (3D) FEM approaches. In the studied coated conductor, the major thin constituent layers, namely, the silver, REBCO and buffer layers, are modeled as 2D surfaces while the relatively thick stabilizer and substrate are in 3D layers. All the adjacent layers are coupled via spring equations under the CZM framework. The mixed-dimensional delamination model is validated by a full-3D FEM counterpart model. Simulation results show that the mixeddimensional model performs simulations with much higher computational efficiency than the full-3D counterpart while maintaining sufficient accuracy. Effects of the anvil size and initial crack size on delamination behavior are discussed and compared to experimental phenomena. Furthermore, the stress distributions of the constituent layers of the conductor under different delamination initiation sites are predicted.
Superconducting materials are always severely restricted in practical engineering applications due to their carryingcurrent degradation under mechanical loads. Based on Ekin's exponential model and Weibull's distribution function, we propose an empirical degradation model for describing the mechanical deformation influence on the critical-current of Bi-based superconducting multi-filamentary composite tapes under axial loading. The critical currents of superconducting tapes depending on the axial strain are investigated analytically. It is shown that the predictions by the developed degradation model agree with the experimental data, in the processes of axial mechanical loading and unloading on the samples. The effect of the critical tension and compression damage strains on the normalized critical currents is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.