Granular materials are used directly or as the primary ingredients of the mixtures in industrial manufacturing, agricultural production and civil engineering. It has been a challenging task to compute the porosity of a granular material which contains a wide range of particle sizes or shapes. Against this background, this paper presents a newly developed method for the porosity prediction of granular materials through Discrete Element Modeling (DEM) and the Back Propagation Neural Network algorithm (BPNN). In DEM, ball elements were used to simulate particles in granular materials. According to the Chinese specifications, a total of 400 specimens in different gradations were built and compacted under the static pressure of 600 kPa. The porosity values of those specimens were recorded and applied to train the BPNN model. The primary parameters of the BPNN model were recommended for predicting the porosity of a granular material. Verification was performed by a self-designed experimental test and it was found that the prediction accuracy could reach 98%. Meanwhile, considering the influence of particle shape, a shape reduction factor was proposed to achieve the porosity reduction from sphere to real particle shape.
The clump-based discrete element model is one of the asphalt mixture simulation methods, which has the potential to not only predict mixture performance but also simulate particle movement during compaction, transporting, and other situations. However, modelling of asphalt sand mortar in this method remains to be a problem due to computing capacity. Larger-sized balls (generally 2.0–2.36 mm) were usually used to model the smaller particles and asphalt binder, but this replacement may result in the mixture’s unrealistic volumetric features. More specifically, replacing original elements with equal volume but larger size particles will increase in buck volume and then different particle contacting states. The major objective of this research is to provide a solution to the dilemma situation through an improved equivalent model of the smaller particles and asphalt binders. The key parameter of the equivalent model is the diameter reduction factor (DRF), which was proposed in this research to minimize the effects of asphalt mortar’s particle replacement modelling. To determine DRF, the DEM-based analysis was conducted to evaluate several mixture features, including element overlap ratio, ball-wall contact number, and the average wall stress. Through this study, it was observed that when the original glued ball diameters are ranging from 2.00 mm and 2.36 mm, the diameter reduction factor changes from 0.82 to 0.86 for AC mixtures and 0.80 to 0.84 for SMA mixtures. The modelling method presented in this research is suitable not only for asphalt mixtures but also for the other particulate mix with multisize particles.
Semi-rigid base course is widely applied in pavement construction. However, because the inorganic binder tends to be affected easily by environmental factors (temperature, moisture), the cracking of semi-rigid base course is a serious problem, which causes reflection cracks on the surface layer. That is one of the main damage types of this kind of pavement structure. In view of the above problems, scholars all over the world have carried out researches on the cracking mechanism and the causes of cracks. Combined with engineering practices, various kinds of reflective crack prevention technologies have been proposed. In this paper, the author systematically investigates the existing retarding methods. According to their characteristics, it is mainly divided into three categories: surface anti-cracking treatment, base anti-cracking treatment and stress absorption structure addition. Meanwhile, the main principles and effects of these three categories of measures are analysed and summarized to provide the reference for subsequent study and design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.