Style Image (a) (b) (c) (d) (e) (f) Figure 1: Face image editing controlled via style images and segmentation masks. a) source images. b) reconstruction of the source image; segmentation mask shown as small inset. c-f) four separate edits; we show the image that provides new style information on top and show the part of the segmentation mask that gets edited as small inset. The results of the successive edits are shown in row two and three. The four edits change hair, mouth and eyes, skin tone, and background, respectively.
High-quality, diverse, and photorealistic images can now be generated by unconditional GANs (e.g., StyleGAN). However, limited options exist to control the generation process using (semantic) attributes while still
preserving the quality of the output. Further, due to the entangled nature of the GAN latent space, performing edits along one attribute can easily result in unwanted changes along other attributes. In this article, in the context of
conditional exploration
of entangled latent spaces, we investigate the two sub-problems of attribute-conditioned sampling and attribute-controlled editing. We present StyleFlow as a simple, effective, and robust solution to both the sub-problems by formulating conditional exploration as an instance of conditional continuous normalizing flows in the GAN latent space conditioned by attribute features. We evaluate our method using the face and the car latent space of StyleGAN, and demonstrate fine-grained disentangled edits along various attributes on both real photographs and StyleGAN generated images. For example, for faces, we vary camera pose, illumination variation, expression, facial hair, gender, and age. Finally, via extensive qualitative and quantitative comparisons, we demonstrate the superiority of StyleFlow over prior and several concurrent works. Project Page and Video:
https://rameenabdal.github.io/StyleFlow
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.