Enthusiasm for ship autonomy is flourishing in the maritime industry. In this context, data-driven prognostics and health management (PHM) systems have emerged as the optimal way to improve operational reliability and system safety. However, further research is needed to enhance the essential actions relating to such a system. Fault detection is the first and most crucial action of any data-driven PHM system. In this article, we propose a fault-type independent spectral anomaly detection algorithm for marine diesel engine degradation in autonomous ferries. The benefits of the algorithm are verified on three fault types where the nature of degradation differs. Both normal operation data and faulty degradation data have been collected from a marine diesel engine using two different engine load profiles. These profiles aim to replicate real autonomous ferry crossing operations, environmental conditions that the ferry may encounter. First, the data are subjected to a feature selection process to remove irrelevant and redundant features. Then, a multiregime normalization method is performed on the data to merge the engine loads into one context. Finally, a variational autoencoder is trained to estimate velocity and acceleration calculations of the anomaly score. Generic and dynamic threshold limits are simultaneously established to detect the fault time step online. The algorithm achieved an accuracy of 97.66% in the final test when the acceleration was used as the fault detector. The results suggest that the algorithm is independent of fault types with different nature of degradation related to the marine diesel engine.
Maintenance is the key to ensuring the safe and efficient operation of marine vessels. Currently, reactive maintenance and preventive maintenance are two main approaches used onboard. These approaches are either cost-intensive or labor-intensive. Recently, Prognostics and Health Management has emerged as an optimal way to manage maintenance operations. In such a system, fault prognostics aims to predict the remaining useful life based on the sensor measurements. In this paper, the feasibility of applying data-driven fault prognostics to marine diesel engines is investigated. Real-world run-to-failure data of two independent fault-types in two different engine load profiles are collected from a hybrid power lab. The first profile is used for training and validation, while the second is used for testing. The LSTM networks are used to construct the fault prognostics model. Experiments and comparisons are performed to obtain the optimal structure of the networks. Results show that the proposed method generalizes well on the second profile and provides remaining useful life predictions with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.