Hepatocellular carcinoma (HCC) is a heterogeneous malignancy as a result of complex genetic and epigenetic alterations. HCC is characterized by a clear gender disparity for which there is lack of a clear mechanistic understanding. Androgen receptor (AR) is thought to be critical for such bias. Meanwhile, the potential function of circular RNA (circRNA), regulated by RNA editing enzyme, remained largely unknown in malignancy till now. By utilizing circRNA microarray survey coupled with in vitro analysis, we analyzed the influence of AR on circRNA expression in HCC. Our results indicated that AR could suppress circRNA expression by upregulating ADAR1 p110. Such effect is because AR served as a transcriptional activator of ADAR1 promoter. More significantly, data collected from our center strongly suggest that ADAR1 expression can effectively predict HCC patients’ prognosis and an abnormal overexpression of ADAR1 is positively correlated with AR in HCC. In addition, we found CircARSP91 (hsa_circ_0085154), one of the circRNAs downregulated by AR in an ADAR1-dependent manner, could inhibit HCC tumor growth both in vitro and in vivo. These findings highlight the fact that AR as a contributing factor for gender disparity in HCC can cause complex consequences though regulation of circRNA expression. Better understanding of the roles of circRNA during HCC initiation and progression will provide a novel angle to develop potential HCC therapies.
The updated meta-analysis first confirms that LCBDE+LC is superior to pre-EST+LC both in perioperative safety and short- and long-term postoperative efficacy, which should be considered as optimal treatment choice for cholecysto-choledocholithiasis.
Circular RNAs (circRNAs) have emerged as important regulators of various cellular processes and have been implicated in cancer. Previously, we reported the discovery of several dysregulated circRNAs including circPABPC1 (polyadenylate-binding protein 1) in human hepatocellular carcinoma (HCC), although their roles in HCC development remained unclear. Here, we show that circPABPC1 is preferentially lost in tumor cells from clinical samples and inhibits both intrahepatic and distant metastases in a mouse xenograft model. This tumor-suppressive function of circPABPC1 can be attributed to its inhibition of cell adhesion and migration through down-regulating a key member of the integrin family, ITGB1 (β1 integrin). Mass spectrometry and biochemical evidence demonstrate that circPABPC1 directly links ITGB1 to the 26S proteasome for degradation in a ubiquitination-independent manner. Our data have revealed an uncanonical route for integrin turnover and a previously unidentified mode of action for circRNAs in HCC that can be harnessed for anticancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.