Precise user and item embedding learning is the key to building a successful recommender system. Traditionally, Collaborative Filtering (CF) provides a way to learn user and item embeddings from the user-item interaction history. However, the performance is limited due to the sparseness of user behavior data. With the emergence of online social networks, social recommender systems have been proposed to utilize each user's local neighbors' preferences to alleviate the data sparsity for better user embedding modeling. We argue that, for each user of a social platform, her potential embedding is influenced by her trusted users, with these trusted users are influenced by the trusted users' social connections. As social influence recursively propagates and diffuses in the social network, each user's interests change in the recursive process. Nevertheless, the current social recommendation models simply developed static models by leveraging the local neighbors of each user without simulating the recursive diffusion in the global social network, leading to suboptimal recommendation performance. In this paper, we propose a deep influence propagation model to stimulate how users are influenced by the recursive social diffusion process for social recommendation. For each user, the diffusion process starts with an initial embedding that fuses the related features and a free user latent vector that captures the latent behavior preference. The key idea of our proposed model is that we design a layer-wise influence propagation structure to model how users' latent embeddings evolve as the social diffusion process continues. We further show that our proposed model is general and could be applied when the user (item) attributes or the social network structure is not available. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model 1 , with more than 13% performance improvements over the best baselines for top-10 recommendation on the two datasets.
Social recommendation has emerged to leverage social connections among users for predicting users' unknown preferences, which could alleviate the data sparsity issue in collaborative filtering based recommendation. Early approaches relied on utilizing each user's first-order social neighbors' interests for better user modeling, and failed to model the social influence diffusion process from the global social network structure. Recently, we propose a preliminary work of a neural influence Diff usion Network (i.e., DiffNet) for social recommendation [37]. DiffNet models the recursive social diffusion process for each user, such that the influence diffusion hidden in the higher-order social network is captured in the user embedding process. Despite the superior performance of DiffNet, we argue that, as users play a central role in both user-user social network and user-item interest network, only modeling the influence diffusion process in the social network would neglect the latent collaborative interests of users hidden in the user-item interest network. To this end, in this paper, we propose DiffNet++, an improved algorithm of DiffNet that models the neural influence diffusion and interest diffusion in a unified framework. By reformulating the social recommendation as a heterogeneous graph with social network and interest network as input, DiffNet++ advances DiffNet by injecting both the higher-order user latent interest reflected in the user-item graph and higher-order user influence reflected in the user-user graph for user embedding learning. This is achieved by iteratively aggregating each user's embedding from three aspects: the user's previous embedding, the influence aggregation of social neighbors from the social network, and the interest aggregation of item neighbors from the user-item interest network. Furthermore, we design a multi-level attention network that learns how to attentively aggregate user embeddings from these three aspects. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.