Long non-coding RNA (lncRNAs) play a critical role in the development of cancers. LncRNA metastasis-associated lung adenocarcinoma transcript 1(MALAT1) has recently been identified to be involved in tumorigenesis of several cancers such as lung cancer, bladder cancer and so on. Here, we found that MALAT1 exist a higher fold change (Tumor/Normal) in clear cell kidney carcinoma (KIRC) from The Cancer Genome Atlas (TCGA) Data Portal and a negative correlation with miR-200s family. We further demonstrated MALAT1 promote KIRC proliferation and metastasis through sponging miR-200s in vitro and in vivo. In addition, miR-200c can partly reverse the MALAT1′s stimulation on proliferation and metastasis in KIRC. In summary we unveil a branch of the MALAT1/miR-200s/ZEB2 pathway that regulates the progression of KIRC. The inhibition of MALAT1 expression may be a promising strategy for KIRC therapy.
Reduced expression of miR-129 has been reported in multiple tumor cell lines and in primary tumors including medulloblastoma, undifferentiated gastric cancers, lung adenocarcinoma, endometrial cancer and colorectal carcinoma. There is also recent evidence of an anti-proliferative activity of miR-129 in tumor cell lines. Still, little is known about how miR-129 regulates cell proliferation. Here we found that lentiviral-mediated overexpression of miR-129 in mouse lung epithelial cells (E10 cells) results in significant G(1) phase arrest that eventually leads to cell death. miR-129 induce G(1) phase arrest in multiple human lung adenocarcinoma cell lines, suggesting miR-129 targeting of G(1)/S phase-specific regulators. Interestingly, we show that Cdk6, a kinase involved in G(1)-S transition, is a direct target of miR-129. We also found the downregulation of three other cell cycle-related novel targets of miR-129, including Erk1, Erk2 and protein kinase C epsilon (Prkce). We further show that among these targets, only Cdk6 is functionally relevant. Restoring expression of Cdk6, but not Prkce partially rescues the cell growth arrest and cell death phenotype that results from miR-129 overexpression. Together, our data indicate that miR-129 plays an important role in regulating cell proliferation by downregulation of Cdk6.
SMOC-2 is a novel member of the SPARC family of matricellular proteins. The purpose of this study was to determine whether SMOC-2 can modulate angiogenic growth factor activity and angiogenesis. SMOC-2 was localized in the extracellular periphery of cultured human umbilical vein endothelial cells (HUVECs). Ectopically expressed SMOC-2 was also secreted into the tissue culture medium. In microarray profiling experiments, a recombinant SMOC-2 adenovirus induced the expression of transcripts required for cell cycle progression in HUVECs. Consistent with a growth-stimulatory role for SMOC-2, its overexpression stimulated DNA synthesis in a dosedependent manner. Overexpressed SMOC-2 also synergized with vascular endothelial growth factor or with basic fibroblast growth factor to stimulate DNA synthesis. Ectopically expressed SMOC-2 stimulated formation of network-like structures as determined by in vitro matrigel angiogenesis assays. Fetal calf serum enhanced the stimulatory effect of overexpressed SMOC-2 in this assay. Conversely, small interference RNA directed toward SMOC-2 inhibited network formation and proliferation. The angiogenic activity of SMOC-2 was also examined in experimental mice by subdermal implantation of Matrigel plugs containing SMOC-2 adenovirus. SMOC-2 adenovirus induced a 3-fold increase in the number of cells invading Matrigel plugs when compared with a control adenoviral vector. Basic fibroblast growth factor and SMOC-2 elicited a synergistic effect on cell invasion. Taken together, our results demonstrate that SMOC-2 is a novel angiogenic factor that potentiates angiogenic effects of growth factors.
DNA damage induced by the carcinogen benzo[a]pyrene dihydrodiol epoxide (BPDE) induces a Chk1-dependent S-phase checkpoint. Here, we have investigated the molecular basis of BPDE-induced S-phase arrest. Chk1-dependent inhibition of DNA synthesis in BPDE-treated cells occurred without detectable changes in Cdc25A levels, Cdk2 activity, or Cdc7/Dbf4 interaction. Overexpression studies showed that Cdc25A, cyclin A/Cdk2, and Cdc7/Dbf4 were not rate-limiting for DNA synthesis when the BPDE-induced S-phase checkpoint was active. To investigate other potential targets of the S-phase checkpoint, we tested the effects of BPDE on the chromatin association of DNA replication factors. The levels of chromatin-associated Cdc45 (but not soluble Cdc45) were reduced concomitantly with BPDE-induced Chk1 activation and inhibition of DNA synthesis. The chromatin association of Mcm7, Mcm10, and proliferating cell nuclear antigen was unaffected by BPDE treatment. However, the association between Mcm7 and Cdc45 in the chromatin fraction was inhibited in BPDE-treated cells. Chromatin immunoprecipitation analyses demonstrated reduced association of Cdc45 with the beta-globin origin of replication in BPDE-treated cells. The inhibitory effects of BPDE on DNA synthesis, Cdc45/Mcm7 associations, and interactions between Cdc45 and the beta-globin locus were abrogated by the Chk1 inhibitor UCN-01. Taken together, our results show that the association between Cdc45 and Mcm7 at origins of replication is negatively regulated by Chk1 in a Cdk2-independent manner. Therefore, Cdc45 is likely to be an important target of the Chk1-mediated S-phase checkpoint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.