Aggregation methods are the most common way of upscaling land cover maps. To analyze the impact of land cover mapping error on upscaling agricultural maps, we utilized the Cropland Data Layer (CDL) data with corresponding confidence level data and simulated eight levels of error using a Monte Carlo simulation for two Agriculture Statistic Districts (ASD) in the U.S.A. The results of the simulations were used as base maps for subsequent upscaling, utilizing the majority rule based aggregation method. The results show that increasing error level resulted in higher proportional errors for each crop in both study areas. As a result of increasing error level, landscape characteristics of the base map also changed greatly resulting in higher proportional error in the upscaled maps. Furthermore, the proportional error is sensitive to the crop area proportion in the base map and decreases as the crop proportion increases. These findings indicate that three factors, the error level of the thematic map, the change in landscape pattern/characteristics of the thematic map, and the objective of the project, should be considered before performing any upscaling. The first two factors can be estimated by using pre-existing land cover maps with relatively high accuracy. The third factor is dependent on the project requirements (e.g., landscape characteristics, proportions of cover types, and use of the upscaled map). Overall, improving our understanding of the impacts of land cover mapping error is necessary to the proper design for upscaling and obtaining the optimal upscaled map.
This article develops a temporal-spatial probability synthesized model (TSPSM), in which a metric describing the characteristic of temporal and spatial information is defined to map paddy rice distribution. The purpose is to reduce the effect of cloud contamination on classification. The error matrix and Kappa were used as accuracy measurement. Results showed that TSPSM obtained higher accuracy with significant difference from error matrices of the other two conventional methods, post comparison classification with post-classification comparison and majority voting. Moreover, smaller window was suitable for the area with higher fragmentation, while the larger was suitable for the area with lower fragmentation. It was concluded that TSPSM could help to improve the potentials of temporal optical image to map crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.