Sex hormones are known to interact with the immune system on multiple levels but information on the types of sex hormone receptors (SHR) and their expression levels in immune cells is scarce. Estrogen, testosterone and progesterone are all considered to interact with the immune system through their respective cell receptors (ERα and ERβ including the splice variant ERβ2, AR and PGR). In this study expression levels of SHR genes in peripheral blood mononuclear cells (PBMCs) and cell subsets (CD4+ and CD8+ T-cells, CD56+ NK-cells, CD14+ monocytes and CD19+ B-cells) were analyzed using standard manual qPCR or a qPCR array (TLDA). Nine healthy individuals including men (n = 2), premenopausal (Pre-MP, n = 5) and postmenopausal (post-MP, n = 2) women were sampled for PBMCs which were separated to cell subsets using FACS. Ten Pre-MP women were longitudinally sampled for total PBMCs at different phases of the menstrual cycle. We found that ERα was most abundant and, unexpectedly, that ERβ2 was the dominant ERβ variant in several FACS sorted cell subsets. In total PBMCs, SHR (ERα, ERβ1, ERβ2, and AR) expression did not fluctuate according to the phase of the menstrual cycle and PGR was not expressed. However, several immune response genes (GATA3, IFNG, IL1B, LTA, NFKB1, PDCD1, STAT3, STAT5A, TBX21, TGFB1, TNFA) were more expressed during the ovulatory and mid-luteal phases. Sex hormone levels did not correlate significantly with gene expression of SHR or immune response genes, but sex hormone-binding globulin (SHBG), a steroid hormone transporting protein, was positively correlated to expression of ERβ1 gene. This study provides new insights in the distribution of ERs in immune cells. Furthermore, expression patterns of several immune response genes differ significantly between phases of the menstrual cycle, supporting a role for sex hormones in the immune response.
Men and women respond differently to infectious diseases. Women show less morbidity and mortality, partially due to the differences in sex hormone levels which can influence the immune response. Torque teno virus (TTV) is non-pathogenic and ubiquitously present in serum from a large proportion (up to 90%) of adult humans with virus levels correlating with the status of the host immune response. The source of TTV replication is unknown, but Tlymphocytes have been proposed. In this study we investigated the presence and levels of TTV in peripheral blood mononuclear cells (PBMCs) in premenopausal (pre-MP) women, post-menopausal (post-MP) women, and men, and determined their serum sex hormone levels. Of the examined subjects (n ¼ 27), we found presence of TTV in PMBC from 17.6% pre-MP (n ¼ 17), 25.0% post-MP (n ¼ 4) and 50.0% men (n ¼ 6). The levels of TTV/μg DNA were lower among TTV-positive men and post-MP women compared to pre-MP women. All the positive pre-MP women were either anovulatory, hypothyroid, or both. In addition, the TTV-positive pre-MP women had significantly lower progesterone levels compared to TTV-negative pre-MP women. Although our study was performed on a limited number of subjects, the data suggests that TTV in PBMC is associated with an anovulatory menstrual cycle with low progesterone levels, and possibly with male sex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.