This paper presents a roughness analysis of sea surface from visible images by feature measurements of texture for the first time. The algorithms presented in this paper include six texture feature measurements of sea surface use gray level co-occurrence matrix, gray level-gradient co-occurrence matrix, Tamura texture feature, autocorrelation function, edge frequency and fractional Brownian motion autocorrelation. The empirical relationship between wind speeds (or sea surface roughness) and image texture roughness are estimated based on the extracted data. Our experiments have demonstrated that our texture methods and empirical relation between wind speeds and image texture roughness can potentially be used to analyze sea surface roughness from visible images. INDEX TERMS Sea surface roughness, gray level co-occurrence matrices, gray level-gradient co-occurrence matrices, tamura texture features, autocorrelation function, edge frequency, fractional Brownian motion. HUICHENG ZHOU received the M.S. degree in information and communication engineering from the School of Electronic and Optical Engineering,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.