Integrating various data sets to provide one optimal subsurface image is a major goal of geophysicst. In this paper, there is a synergetic approach used to delineate the tectonic-structural framework with analyzing the hydrocarbon reservoir in the Lower Indus Platform basin of Pakistan. The reflected seismic profiles and potential field map constitute the data base of this study. Our study in the line of the previous research is resulted from important oil and gas discoveries contained in the Early Cretaceous and Upper Jurassic formations of the Lower Indus Platform basin area. The result shows trapping mechanism in the Lower Indus Platform basin involves of the fault blocks and stratigraphic traps are present in the area. The more refined images are interpreted to provide greater insight into detailed integrated geophysical study of area.
For the successful discovery and development of tight sand gas reserves, it is necessary to locate sand with certain features. These features must largely include a significant accumulation of hydrocarbons, rock physics models, and mechanical properties. However, the effective representation of such reservoir properties using applicable parameters is challenging due to the complicated heterogeneous structural characteristics of hydrocarbon sand. Rock physics modeling of sandstone reservoirs from the Lower Goru Basin gas fields represents the link between reservoir parameters and seismic properties. Rock physics diagnostic models have been utilized to describe the reservoir sands of two wells inside this Middle Indus Basin, including contact cement, constant cement, and friable sand. The results showed that sorting the grain and coating cement on the grain’s surface both affected the cementation process. According to the models, the cementation levels in the reservoir sands of the two wells ranged from 2% to more than 6%. The rock physics models established in the study would improve the understanding of characteristics for the relatively high Vp/Vs unconsolidated reservoir sands under study. Integrating rock physics models would improve the prediction of reservoir properties from the elastic properties estimated from seismic data. The velocity–porosity and elastic moduli-porosity patterns for the reservoir zones of the two wells are distinct. To generate a rock physics template (RPT) for the Lower Goru sand from the Early Cretaceous period, an approach based on fluid replacement modeling has been chosen. The ratio of P-wave velocity to S-wave velocity (Vp/Vs) and the P-impedance template can detect cap shale, brine sand, and gas-saturated sand with varying water saturation and porosity from wells in the Rehmat and Miano gas fields, both of which have the same shallow marine depositional characteristics. Conventional neutron-density cross-plot analysis matches up quite well with this RPT’s expected detection of water and gas sands.
A seismic reflection of Line 12-B belonging to Mianwali Re-entrant was acquired and processed for 2-D interpretation. The line orients itself NNE-SSW direction. The sections have the shot points from VP-199 to VP-1044. Eleven Reflectors R1, R2, R3, Base Miocene, Pinchout P1, P2, P3, P4, P5P6 (Pinchout) are marked and a basement has been marked and interpreted. All the reflectors above the basement show a downward bending at the center. The depth of each reflector was calculated by iso velocity contour map method. The depth section obtained by this method shows stratigraphic features like Pinchouts. The reflectors are then correlated with the subsurface structures and stratigraphy of the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.