Soil microbial communities directly affect soil functionality through their roles in the cycling of soil nutrients and carbon storage. Microbial communities vary substantially in space and time, between soil types and under different land management. The mechanisms that control the spatial distributions of soil microbes are largely unknown as we have not been able to adequately upscale a detailed analysis of the microbiome in a few grams of soil to that of a catchment, region or continent. Here we reveal that soil microbes along a 1000 km transect have unique spatial structures that are governed mainly by soil properties. The soil microbial community assessed using Phospholipid Fatty Acids showed a strong gradient along the latitude gradient across New South Wales, Australia. We found that soil properties contributed the most to the microbial distribution, while other environmental factors (e.g., temperature, elevation) showed lesser impact. Agricultural activities reduced the variation of the microbial communities, however, its influence was local and much less than the overall influence of soil properties. The ability to predict the soil and environmental factors that control microbial distribution will allow us to predict how future soil and environmental change will affect the spatial distribution of microbes.
Karst rocky desertification (KRD) is a process of soil desertification, which leads to the decline of soil quality and biomass. We conducted a plant community survey in KRD areas in Chongqing, China. Our aims were to determine key soil properties that shape plant communities and to identify essential leaf functional traits (LFTs) in responding to the progression of KRD. The vegetation survey was carried in a total of twenty study sites (five replicates for four stages of KRD) in the Wushan County in Chongqing, China. Leaves were collected from all the species in every site and measured/calculated for five LFTs, namely, specific leaf area, leaf area, leaf thickness, leaf tissue density, and leaf dry matter content. Soil samples were collected in triplicates in each site to measure soil properties. We found that the overall richness and diversity of community decreased along with the progression of KRD. Phanerophytes predominated in all the KRD areas. Soil pH was the main determinant of vegetation structure. Leaves with lower area yet higher density had the optimal adaptability in KRD regions, which can be planted as pioneer vegetation to restore land in KRD regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.