Tumor metastasis is one of the big challenges in cancer treatment and is often associated with high patient mortality. Until now, there is an agreement that tumor invasion and metastasis are related to degradation of extracellular matrix (ECM) by enzymes. Inspired by the formation of natural ECM and the in situ self-assembly strategy developed in our group, herein, we in situ constructed an artificial extracellular matrix (AECM) based on transformable Laminin (LN)-mimic peptide 1 (BP-KLVFFK-GGDGR-YIGSR) for inhibition of tumor invasion and metastasis. The peptide 1 was composed of three modules including (i) the hydrophobic bis-pyrene (BP) unit for forming and tracing nanoparticles; (ii) the KLVFF peptide motif that was inclined to form and stabilize fibrous structures through intermolecular hydrogen bonds; and (iii) the Y-type RGD-YIGSR motif, derived from LN conserved sequence, served as ligands to bind cancer cell surfaces. The peptide 1 formed nanoparticles (1-NPs) by the rapid precipitation method, owing to strong hydrophobic interactions of BP. Upon intravenous injection, 1-NPs effectively accumulated in the tumor site due to the enhanced permeability and retention (EPR) effect and/or targeting capability of RGD-YIGSR. The accumulated 1-NPs simultaneously transformed into nanofibers (1-NFs) around the solid tumor and further entwined to form AECM upon binding to receptors on the tumor cell surfaces. The AECM stably existed in the primary tumor site over 72 h, which consequently resulted in efficiently inhibiting the lung metastasis in breast and melanoma tumor models. The inhibition rates in two tumor models were 82.3% and 50.0%, respectively. This in vivo self-assembly strategy could be widely utilized to design effective drug-free biomaterials for inhibiting the tumor invasion and metastasis.
Cerebral amyloid β-peptide (Aβ) accumulation resulting from an imbalance between Aβ production and clearance is one of the most important causes in the formation of Alzheimer’s disease (AD). In order to preserve the maintenance of Aβ homeostasis and have a notable AD therapy, achieving a method to clear up Aβ plaques becomes an emerging task. Herein, we describe a self-destructive nanosweeper based on multifunctional peptide-polymers that is capable of capturing and clearing Aβ for the effective treatment of AD. The nanosweeper recognize and bind Aβ via co-assembly through hydrogen bonding interactions. The Aβ-loaded nanosweeper enters cells and upregulates autophagy thus promoting the degradation of Aβ. As a result, the nanosweeper decreases the cytotoxicity of Aβ and rescues memory deficits of AD transgenic mice. We believe that this resourceful and synergistic approach has valuable potential as an AD treatment strategy.
A pathology-adaptive nanosystem, in which nest-like hosts are built based on nanofibers that are transformed from i.v. injected nanoparticles under the acidic tumor microenvironment. The solid tumor is artificially modified by nest-like hosts readily and firmly, resulting in highly efficient accumulation and stabilization of guest theranostics. This strategy shows great potential for the theranostics delivery to tumors.
Plasmonic metal nanoparticles attract intense research attention because of their fascinating surface plasmon resonance properties and their potential applications in diverse fields. Here, some of the recent research efforts on the synthesis and applications of plasmonic metal nanoparticles are highlighted. Starting from the colloidal synthesis of metal nanoparticles, various shaped silver and gold nanostructures are discussed. The applications of plasmonic nanoparticles in photocatalysis, surface-enhanced Raman spectroscopy (SERS), and devices are used as excellent examples showcasing the advantages of these nanoparticles. The report closes with a brief summary and discussion on the challenges and future direction in this research field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.