The current pandemic of COVID-19 is fueled by more infectious emergent Omicron variants. Ongoing concerns of emergent variants include possible recombinants, as genome recombination is an important evolutionary mechanism for the emergence and re-emergence of human viral pathogens. In this study, we identified diverse recombination events between two Omicron major subvariants (BA.1 and BA.2) and other variants of concern (VOCs) and variants of interest (VOIs), suggesting that co-infection and subsequent genome recombination play important roles in the ongoing evolution of SARS-CoV-2. Through scanning high-quality completed Omicron spike gene sequences, 18 core mutations of BA.1 (frequency >99%) and 27 core mutations of BA.2 (nine more than BA.1) were identified, of which 15 are specific to Omicron. BA.1 subvariants share nine common amino acid mutations (three more than BA.2) in the spike protein with most VOCs, suggesting a possible recombination origin of Omicron from these VOCs. There are three more Alpha-related mutations in BA.1 than BA.2, and BA.1 is phylogenetically closer to Alpha than other variants. Revertant mutations are found in some dominant mutations (frequency >95%) in the BA.1. Most notably, multiple characteristic amino acid mutations in the Delta spike protein have been also identified in the “Deltacron”-like Omicron Variants isolated since November 11, 2021 in South Africa, which implies the recombination events occurring between the Omicron and Delta variants. Monitoring the evolving SARS-CoV-2 genomes especially for recombination is critically important for recognition of abrupt changes to viral attributes including its epitopes which may call for vaccine modifications.
Background: Although papillary thyroid microcarcinoma (PTMC) has a high incidence and excellent clinical outcome, debate continues as to the therapeutic approach that would be most appropriate after confirming the diagnosis. Methods: We retrospectively analyzed the medical records of 311 patients with T1aN0M0 PTMC between January 2013 and September 2018. In all, 168 underwent microwave ablation (MWA), and 143 underwent surgery. MWA was performed using extensive ablation with hydrodissection. The surgery comprised thyroid lobectomy (TL) with unilateral central lymph node dissection (CND). We examined clinical outcomes during mean follow-up periods of 824 ± 452 days for the TL group and 753 ± 520 days for the MWA group. Results: Postprocedural follow-up revealed that, in the MWA group, the tumors had completely disappeared in 34 patients, and the remainder were reduced to necrotic or carbonized tissue. The incidence of transient hypoparathyroidism was significantly lower in the MWA group than in the TL group (p < .001). In addition, during the follow-up, we found no statistically significant differences between the two groups (TL vs MWA) for PTMC recurrence (1 vs 2 cases), lymph node metastasis (5 vs 5 cases), or disease-free survival [2001 days (5.5 years) vs 1702 days (4.7 years)] (p ¼ .659, p ¼ .795, and p ¼ .974, respectively). Conclusions: If low-risk thyroid carcinoma (i.e., T1N0M0 PTMC) is accurately diagnosed early, MWA could be a minimally invasive alternative to surgery based on our short-term follow-up regarding recurrence and the low rates of complications and disease-free survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.