SummaryThe plant flavonoid dogma proposes that labile plant flavonoid carbocations (PFCs) play vital roles in the biosynthesis of proanthocyanidins (PAs). However, whether PFCs exist in plants and how PFCs function remain unclear. Here, we report the use of an integrative strategy including enzymatic assays, mutant analysis, metabolic engineering, isotope labeling and metabolic profiling to capture PFCs and demonstrate their functions. In anthocyanidin reductase (ANR) assays, an (−)‐epicatechin conjugate was captured in protic polar nucleophilic methanol alone or methanol−HCl extracts. Tandem mass spectrum (MS/MS) analysis characterized this compound as an (−)‐epicatechin‐4‐O‐methyl (EOM) ether, which resulted from (−)‐epicatechin carbocation and the methyl group of methanol. Acid‐based catalysis of procyanidin B2 and B3 produced four compounds, which were annotated as two EOM and two (+)‐catechin‐4‐O‐methyl (COM) ethers. Metabolic profiling of seven PA pathway mutants showed an absence or reduction of two EOM ether isomers in seeds. Camellia sinensis ANRa (CsANRa), leucoanthocyanidin reductase c (CsLARc), and CsMYB5b (a transcription factor) were independently overexpressed for successful PA engineering in tobacco. The EOM ether was remarkably increased in CsANRa and CsMYB5b transgenic flowers. Further metabolic profiling for eight green tea tissues revealed two EOM and two COM ethers associated with PA biosynthesis. Moreover, an incubation of (−)‐epicatechin or (+)‐catechin with epicatechin carbocation in CsANRa transgenic flower extracts formed dimeric procyanidin B1 or B2, demonstrating the role of flavan‐3‐ol carbocation in the formation of PAs. Taken together, these findings indicated that flavan‐3‐ol carbocations exist in extracts and are involved in the biosynthesis of PAs of plants.
Main conclusion LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of NtLAR and NtANR s in CsMYB5b transgenic tobacco. Tea is rich in polyphenolic compounds, and catechins are the major polyphenols in tea. The biosynthesis of polyphenols is closely related to the expression of the leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes. In this paper, an evolutionary analysis and functional characterization of three CsLARs were performed. The phylogenetic tree showed that plant LARs could be grouped into three, including gymnosperms, monocotyledons and dicotyledons (clusters I and II). The eighth amino acid residue in a conserved LAR-specific motif is changeable due to a transversion (G → T) and transition (G → C) that occur in the corresponding codon. Therefore, plant LARs can be classified as G-type, A-type and S-type LARs due to this variable amino acid residue. Although (2R, 3S)-trans-flavan-3-ols were the products of recombinant CsLARs proteins expressed in Escherichia coli, both (2R, 3S)-trans and (2R, 3R)-cis-flavan-3-ols were detected in tobacco overexpressing CsLARs. However, a butanol/HCl hydrolysis assay indicated that overexpression of the CsLARs caused a decrease in polymerized catechins. A hybridization experiment with CsLARc + AtPAP1 also showed that no polymers other than epicatechin, catechin and glycoside were detected, although the accumulation of anthocyanins was markedly decreased. CsMYB5b promoted the biosynthesis of both flavan-3-ols and proanthocyanidins (PAs). Therefore, LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of the NtLAR and NtANRs in CsMYB5b transgenic tobacco.Electronic supplementary materialThe online version of this article (doi:10.1007/s00425-017-2771-z) contains supplementary material, which is available to authorized users.
Flavan-3-ols and oligomeric proanthocyanidins (PAs) are the main nutritional polyphenols in green tea (Camellia sinensis), which provide numerous benefits to human health. To date, the regulatory mechanism of flavan-3-ol biosynthesis in green tea remains open to study. Herein, we report the characterization of a C. sinensis tryptophan-aspartic acid repeat protein (CsWD40) that interacts with myeloblastosis (MYB) and basic helix-loop-helix (bHLH) transcription factors (TFs) to regulate the biosynthesis of flavan-3-ols. Full length CsWD40 cDNA was cloned from leaves and was deduced to encode 342 amino acids. An in vitro yeast two-hybrid assay demonstrated that CsWD40 interacted with two bHLH TFs (CsGL3 and CsTT8) and two MYB TFs (CsAN2 and CsMYB5e). The overexpression of CsWD40 in Arabidopsis thaliana transparent testa glabra 1 (ttg1) restored normal trichome and seed coat development. Ectopic expression of CsWD40 alone in tobacco resulted in a significant increase in the anthocyanins of transgenic petals. CsWD40 was then coexpressed with CsMYB5e in tobacco plants to increase levels of both anthocyanins and PAs. Furthermore, gene expression analysis revealed that CsWD40 expression in tea plants could be induced by several abiotic stresses. Taken together, these data provide solid evidence that CsWD40 partners with bHLH and MYB TFs to form ternary WBM complexes to regulate anthocyanin, PA biosynthesis, and trichome development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.