Aspect level sentiment classification aims at identifying the sentiment of each aspect term in a sentence. Deep memory networks often use location information between context word and aspect to generate the memory. Although improved results are achieved, the relation information among aspects in the same sentence is ignored and the word location can't bring enough and accurate information for the analysis on the aspect sentiment. In this paper, we propose a novel framework for aspect level sentiment classification, deep mask memory network with semantic dependency and context moment (DMMN-SDCM), which integrates semantic parsing information of the aspect and the inter-aspect relation information into deep memory network. With the designed attention mechanism based on semantic dependency information, different parts of the context memory in different computational layers are selected and useful inter-aspect information in the same sentence is exploited for the desired aspect. To make full use of the inter-aspect relation information, we also jointly learn a context moment learning task, which aims to learn the sentiment distribution of the entire sentence for providing a background for the desired aspect. We examined the merit of our model on SemEval 2014 Datasets, and the experimental results show that our model achieves a state-of-the-art performance.
Target sentiment analysis aims to detect opinion targets along with recognizing their sentiment polarities from a sentence. Some models with span-based labeling have achieved promising results in this task. However, the relation between the target extraction task and the target classification task has not been well exploited. Besides, the span-based target extraction algorithm has a poor performance on target phrases due to the maximum target length setting or length penalty factor. To address these problems, we propose a novel framework of Shared-Private Representation Model (SPRM) with a coarse-to-fine extraction algorithm. For jointly learning target extraction and classification, we design a Shared-Private Network, which encodes not only shared information for both tasks but also private information for each task. To avoid missing correct target phrases, we also propose a heuristic coarse-to-fine extraction algorithm that first gets the approximate interval of the targets by matching the nearest predicted start and end indexes and then extracts the targets by adopting an extending strategy. Experimental results show that our model achieves stateof-the-art performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.