The setting time of alkali-activated slag (AAS) binders is extremely short, while traditional retarders of Portland cement may be invalid for AAS. To find an effective retarder with a less negative impact on strength, borax (B), sucrose (S), and citric acid (CA) were selected as potential retarders. The setting time of AAS with different admixtures dosages of 0%, 2%, 4%, 6%, and 8%, and the unconfined compressive strength and beam flexural strength of 3 d, 7 d, and 28 d AAS mortar specimens were tested. The microstructure of AAS with different additives was observed by scanning using an electron microscope (SEM), and the hydration products were analyzed by energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), and thermogravimetric analysis (DT-TGA) to explain the retarding mechanism of AAS with different additives. The results showed that the incorporation of borax and citric acid could effectively prolong the setting time of AAS more than that of sucrose, and the retarding effect is more and more obvious with the increase in borax and citric acid dosages. However, sucrose and citric acid negatively influence AAS’s unconfined compressive strength and flexural stress. The negative effect becomes more evident with the increase in sucrose and citric acid dosages. Borax is the most suitable retarder for AAS among the three selected additives. SEM-EDS analysis showed that the incorporation of borax does three things: produces gels, covers the surface of the slag, and slows down the hydration reaction rate.
High mud content in the sand has a negative impact on cement mortar but there is little research on Alkali-activated slag (AAS) mortar. In order to explore the impacts of mud content in the sand on the performance of AAS mortar, this paper used sand that contains silt, clay, and a mixture of silt and clay; tested the setting time of AAS with different mud contents of 0%, 2%, 4%, 6%, 8%, and 10%; and measured the unconfined compressive strength and beam flexural strength of 3 d, 7 d, and 28 d AAS mortar specimens. The microstructure of AAS mortar with different kinds of mud was observed by scanning electron microscope (SEM), the elemental composition of the hydration product was tested by energy dispersive spectroscopy (EDS), and the AAS interaction mechanism with different kinds of mud was analyzed. The main conclusions are: the higher the mud content in the sand, the shorter the initial setting time and the longer the final setting time of AAS, mainly because the mud in the sand affects the hydration process; mud content above 4% causes a rapid decrease in the compressive and flexural strengths of AAS mortar, mainly because the mud affects the hydration process and hinders the bonding of the hydration product with the sand. When there is no mud in the sand, the main hydration product of AAS is dense calcium-alumina-silicate-hydrate (C-A-S-H) gel. When the sand contains silt, the hydration product of AAS is loose C-A-S-H gel. When the sand contains clay, the hydration products of AAS contain C-A-S-H gel and a small amount of sodium-aluminum-silicate-hydrate (N-A-S-H), and needle-like crystals. Loose gel and crystals have a negative effect on the AAS mortar strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.