Janus particles have recently garnered significant attention for their distinct properties compared to particles that are homogeneously functionalized. Moreover, high aspect ratio Janus particles that are rod-like or planar (i.e., nanosheets) are especially intriguing considering their interfacial properties as well as their ability to assemble into higher order and hybrid structures. To date, major challenges facing the exploration and utilization of 2D Janus particles are scalability of synthesis, characterization of tailored chemical functionalization, and ability to introduce a diverse set of functionalities. Herein, a facile method to access Janus 2D graphene oxide (GO) nanosheets by combining a Pickering-type emulsion and grafting-from polymerization via ATRP is reported. Janus GO nanosheets bearing PMMA on one face as well as the symmetrically functionalized analogue are prepared, and the chemical, thermal, structural, surface, and interfacial properties of these materials are characterized. Time-of-flight secondary ion mass spectrometry coupled with Langmuir-Blodgett films is shown to be an ideal route to conclusively establish asymmetric functionalization of 2D materials. This work not only provides a facile route for the preparation of Janus nanosheets but also demonstrates the direct visualization of polymer grown from the surface of GO.
Ionic liquids (ILs) have received attention for a diverse range of applications, but their liquid nature can make them difficult to handle and process and their high viscosities can lead to suboptimal performance. As such, encapsulated ILs are attractive for their ease of handling and high surface area and have potential for improved performance in energy storage, gas uptake, extractions, and so forth. Herein, we report a facile method to encapsulate a variety of ILs using Pickering emulsions as templates, graphene oxide (GO)-based nanosheets as particle surfactants, and interfacial polymerization for stabilization. The capsules contain up to 80% IL in the core, and the capsule shells are composed of polyurea and GO. We illustrate that capsules can be prepared from IL-in-water or IL-in-oil emulsions and explore the impact of monomer and IL identity, thereby accessing different compositions. The spherical, discrete capsules are characterized by optical microscopy, scanning electron microscopy, infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and 1H NMR spectroscopy. We illustrate the application of these IL capsules as a column material to remove phenol from oil, demonstrating ≥98% phenol removal after passage of >170 column volumes. This simple method to prepare capsules of IL will find widespread use across diverse applications.
Mechanically robust, highly compressible, and conductive thermoplastic polyurethane/carbon black foams were successfully fabricated via 3D printing. Thixotropic inks were formulated by dispersing nanoclay, carbon black, and polymer in an organic solvent, and then 3D multifunctional sensors were prepared by direct ink writing (DIW). Sequential removal of solvent and nanoclay yielded a porous polymer/carbon black structure, which maintained excellent elasticity and compression cyclability. The presence of carbon black in the foams led to good electrical conductivity and stable piezoresistive sensing signals at a strain of up to 80%, including the ability to distinguish human motions. Complementary to a decrease in resistance upon compression, the foam can be used as a gas sensor device, as exposure to volatile organic compounds causes the polymer to swell and an increase in resistance. The printed conductive foams can be easily recycled and reprocessed by dissolution in an organic solvent and subsequent re-3D printing, with little detriment to performance.
Fluid-fluid interfaces have widespread applications in personal care products, the food industry, oil recovery, mineral processes, etc. and are also important and versatile platforms for generating advanced materials. In Pickering emulsions, particles stabilize the fluid-fluid interface, and their presence reduces the interfacial energy between the two fluids. To date, most Pickering emulsions stabilized by 2D particles make use of clay platelets or GO nanosheets. These systems have been used to template higher order hybrid, functional materials, most commonly, armored polymer particles, capsules, and Janus nanosheets. This review discusses the experimental and computational study of the assembly of sheet-like 2D particles at fluid-fluid interfaces, with an emphasis on the impact of chemical composition, and the use of these assemblies to prepare composite structures of dissimilar materials. The review culminates in a perspective on the future of Pickering emulsions using 2D particle surfactants, including new chemical modification and types of particles as well as the realization of properties and applications not possible with currently accessible systems, such as lubricants, porous structures, delivery, coatings, etc.
Emulsions stabilized by particles (i.e., Pickering emulsions) are complementary to those stabilized by small molecules or polymers and most commonly consist of oil droplets dispersed in a continuous water phase, with particles assembled at the fluid-fluid interface. New particle surfactants and different fluid-fluid interfaces are critical for developing next-generation systems for a number of advanced applications. Herein we report the preparation of IL-containing emulsions stabilized by graphene oxide (GO)-based nanoparticles using the IL [Bmim][PF]: GO nanosheets stabilize IL-in-water emulsions, and alkylated GO nanosheets (C-GO) stabilize IL-in-oil emulsions. The impact of particle concentration, fluid-fluid ratio, and addition of acid or base on emulsion formation and stability is studied, with distinct effects for the water and oil systems observed. We then illustrate the broad applicability of GO-based particle surfactants by preparing emulsions with different ILs and preparing inverted emulsions (water-in-IL and oil-in-IL emulsions). The latter systems were accessed by tuning the polarity of GO nanosheets by functionalization with a perfluorinated alkyl chain such that they were dispersible in IL. This work provides insight into the preparation of different IL-containing emulsions and lays a foundation for the architecture of dissimilar materials into composite systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.