• Molecular profiling was used to optimize an ex vivo modulation protocol with dmPGE 2 for UCB transplantation.• Pulse treatment of UCB with dmPGE 2 is safe and may lead to accelerated UCB engraftment and preferential cord chimerism.Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates, and early mortality. 16,16-Dimethyl prostaglandin E 2 (dmPGE 2 ) was previously identified to be a critical regulator of HSC homeostasis, and we hypothesized that brief ex vivo modulation with dmPGE 2 could improve patient outcomes by increasing the "effective dose" of HSCs. Molecular profiling approaches were used to determine the optimal ex vivo modulation conditions (temperature, time, concentration, and media) for use in the clinical setting. A phase 1 trial was performed to evaluate the safety and therapeutic potential of ex vivo modulation of a single UCB unit using dmPGE 2 before reduced-intensity, double UCB transplantation. Results from this study demonstrated clear safety with durable, multilineage engraftment of dmPGE 2 -treated UCB units. We observed encouraging trends in efficacy, with accelerated neutrophil recovery (17.5 vs 21 days, P 5 .045), coupled with preferential, long-term engraftment of the dmPGE 2 -treated UCB unit in 10 of 12 treated participants. This study was registered at www. clinicaltrials.gov as #NCT00890500. (Blood. 2013;122(17):3074-3081)
SUMMARY To maintain lifelong production of blood cells, hematopoietic stem cells (HSC) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSC (LT-HSC) reside in several, perhaps overlapping, niches that produce regulatory molecules/signals necessary for homeostasis and increased output following stress/injury 1–5. Despite significant advances in specific cellular or molecular mechanisms governing HSC/niche interactions, little is understood about regulatory function within the intact mammalian hematopoietic niche. Recently, we and others described a positive regulatory role for Prostaglandin E2 (PGE2) on HSC function ex vivo 6,7. While exploring the role of endogenous PGE2 we unexpectedly observed hematopoietic egress after nonsteroidal anti-inflammatory drug (NSAID) treatment. Surprisingly, this was independent of the SDF-1/CXCR4 axis. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin (OPN). Hematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in higher species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced EP4 receptor signaling. These results not only uncover unique regulatory roles for EP4 signaling in HSC retention in the niche but also define a rapidly translatable strategy to therapeutically enhance transplantation.
Rat RoDH performs efficiently (V(m)/K(m)) in a pathway of all-trans-retinoic acid biosynthesis in cells and recognizes the physiological form of vitamin A, i.e., retinol bound with cellular retinol binding-protein, type I. Here we report that mouse embryo (e7.5 to e18.5) and liver (e12.5 to P2M) display inversely related mRNA expression of an Rodh ortholog, rdh1, and a major retinoic acid catabolic enzyme, cyp26a1, suggesting coordinate modulation of retinoic acid homeostasis. Rdh1 inactivation by homologous recombination produces mice with decreased liver cyp26a1 mRNA and protein and increased liver and kidney retinoid stores, when fed vitamin A-restricted diets. Thus, null mice autocompensate by down-regulating cyp26a1 and sparing retinoids, indicating that rdh1 metabolizes retinoids in vivo. Surprisingly, rdh1-null mice grow longer than wild type, with increased weight and adiposity, when restricted in vitamin A. Liver, kidney, and multiple fat pads increase in weight. Some differences reflect the larger sizes of rdh1-null mice, but mesentery, femoral, and inguinal fat pads grow disproportionately larger. These data reveal an unexpected contribution of Rdh1 to size and adiposity and provide the first genetic evidence of a candidate retinol dehydrogenase affecting either vitamin A-related homeostasis physiologically or vitamin A-related gene expression or biological function in vivo.
A substantial number of patients with leukemia and lymphoma treated with anti-CD19 or anti-CD22 monoCAR-T cell therapy relapse because of antigen loss or down-regulation. We hypothesized that B cell tumor antigen escape may be overcome by a chimeric antigen receptor (CAR) design that simultaneously targets three B cell leukemia antigens. We engineered trispecific duoCAR-T cells with lentiviral vectors encoding two CAR open reading frames that target CD19, CD20, and CD22. The duoCARs were composed of a CAR with a tandem CD19- and CD20-targeting binder, linked by the P2A self-cleaving peptide to a second CAR targeting CD22. Multiple combinations of intracellular T cell signaling motifs were evaluated. The most potent duoCAR architectures included those with ICOS, OX40, or CD27 signaling domains rather than those from CD28 or 4-1BB. We identified four optimal binder and signaling combinations that potently rejected xenografted leukemia and lymphoma tumors in vivo. Moreover, in mice bearing a mixture of B cell lymphoma lines composed of parental triple-positive cells, CD19-negative, CD20-negative, and CD22-negative variants, only the trispecific duoCAR-T cells rapidly and efficiently rejected the tumors. Each of the monoCAR-T cells failed to prevent tumor progression. Analysis of intracellular signaling profiles demonstrates that the distinct signaling of the intracellular domains used may contribute to these differential effects. Multispecific duoCAR-T cells are a promising strategy to prevent antigen loss–mediated relapse or the down-regulation of target antigen in patients with B cell malignancies.
Proliferation and differentiation of hematopoietic stem/progenitor cells (HSPC) within bone marrow (BM) niches are regulated by adhesion molecules and cytokines produced by mesenchymal stem/progenitor cells (MPC) and osteoblasts (OB). HSPCs that egresses to peripheral blood are widely used for transplant and granulocyte-colony stimulating factor_(G-CSF) is used clinically to induce mobilization. The mechanisms, through which G-CSF regulates HSPC trafficking however, are not completely understood. Herein we show that G-CSF driven neutrophil expansion alters the BM niche that leads to HSPC mobilization. Alcam−Sca-1+MPC and Alcam+Sca-1− OB are reduced coincident with mobilization, which correlates inversely with BM neutrophil expansion. In mice made neutropenic by the neutrophil specific anti-Ly6G antibody, G-CSF mediated reduction in MPC and OB is attenuated and mobilization reduced without an effect on monocytes/macrophages. Neutrophils, expanded in response to G-CSF induce MPC and OB apoptosis leading to reduced production of BM HSPC retention factors including stromal cell derived factor-1 (SDF-1), stem cell factor (SCF) and vascular cell adhesion molecule-1(VCAM-1). Blockade of neutrophil reactive oxygen species (ROS) attenuates G-CSF mediated MPC and OB apoptosis. These data show that the expansion of BM neutrophils by G-CSF contributes to the transient degradation of retention mechanisms within the BM niche, facilitating enhanced HSPC egress/mobilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.