Mitochondria are the source of reactive oxygen species (ROS) in plant cells and play a central role in the mitochondrial electron transport chain (ETC) and tricarboxylic acid cycle (TCA) cycles; however, ROS production and regulation for seed germination, seedling growth, as well as mitochondrial responses to abiotic stress, are not clear. This study was conducted to obtain basic information on seed germination, embryo mitochondrial antioxidant responses, and protein profile changes in artificial aging in oat seeds (Avena sativa L.) exposed to exogenous nitric oxide (NO) treatment. The results showed that the accumulation of H2O2 in mitochondria increased significantly in aged seeds. Artificial aging can lead to a loss of seed vigor, which was shown by a decline in seed germination and the extension of mean germination time (MGT). Seedling growth was also inhibited. Some enzymes, including catalase (CAT), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR), maintained a lower level in the ascorbate-glutathione (AsA-GSH) scavenging system. Proteomic analysis revealed that the expression of some proteins related to the TCA cycle were down-regulated and several enzymes related to mitochondrial ETC were up-regulated. With the application of 0.05 mM NO in aged oat seeds, a protective effect was observed, demonstrated by an improvement in seed vigor and increased H2O2 scavenging ability in mitochondria. There were also higher activities of CAT, GR, MDHAR, and DHAR in the AsA-GSH scavenging system, enhanced TCA cycle-related enzymes (malate dehydrogenase, succinate-CoA ligase, fumarate hydratase), and activated alternative pathways, as the cytochrome pathway was inhibited. Therefore, our results indicated that seedling growth and seed germinability could retain a certain level in aged oat seeds, predominantly depending on the lower NO regulation of the TCA cycle and AsA-GSH. Thus, it could be concluded that the application of 0.05 mM NO in aged oat seeds improved seed vigor by enhancing the mitochondrial TCA cycle and activating alternative pathways for improvement.
Increasing seed yield and quality of key cool‐season perennial grasses is an important component of meeting China's environmental, food security, and urban beautification goals. Determining a suitable seed producing region and developing best management practices for this region with specific, high priority grasses will contribute to the availability of seed for reducing desertification, increasing livestock production, and improving urban living conditions. Previous research in other areas has addressed various agronomic practices on some grasses, but none has evaluated optimal row spacings for producing high yields of high quality seed in conditions similar to the Hexi Corridor, currently a major seed producing area in China for other seed crops. We compared our field trials in this area with those of other regions in China and the world to determine if this area would be suitable as a grass seed production center. Five important perennial, cool‐season grasses {[Elymus kamoji (ohwi) S.L. Chen, slender wheatgrass [Elymus trachycaulus (Link) Gould ex Shinners ssp. Trachycaulus], smooth bromegrass (Bromus inermis Leyss), Siberian wildrye (Elymus sibiricus L.), and Chinese sheepgrass [Leymus chinensis (Trin) Tzvel]} were evaluated from 2010 to 2012 under four row spacing treatments (30, 50, 70, and 90 cm). Results showed all five grasses have potential for high seed production in this region, with yields equivalent to or significantly higher than other areas. Optimal row spacing for Elymus kamoji and smooth bromegrass was 30 cm while a 50 cm row spacing was better for seed production and weed control for slender wheatgrass, Siberian wildrye, and Chinese sheepgrass. This work will allow multinational seed companies, development agencies, and government program directors to better evaluate the potential economic sustainability of grass seed production in this region compared to importing seed from other regions of the world.
To evaluate deterioration of oat seeds during storage, we analyzed oxygen radicals, antioxidant enzyme activity, proline content, and gene transcript levels in oat seeds with different moisture contents (MCs; 4, 16, and 28% w/w) during storage for 0, 6, and 12 months (CK, LT-6, and LT-12 treatments, respectively) at 4°C. The germination percentage decreased significantly with higher seed MCs and longer storage duration. The concentrations of superoxide radical and hydrogen peroxide increased with seed MC increasing. The activities of catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) may have had a complementary or interacting role to scavenge reactive oxygen species. As the storage duration extended, the proline content decreased in seeds with 4 and 16% MC and increased in 28%. These findings suggest that proline played the main role in adaptation to oxidative stress in seeds with higher MC (28%), while antioxidant enzymes played the main role in seeds with lower MCs (4%, 16%). In the gene transcript analyses, SOD1 transcript levels were not consistent with total SOD activity. The transcript levels of APX1 and CAT1 showed similar trends to those of APX and CAT activity. The transcript levels of P5CS1, which encodes a proline biosynthetic enzyme, increased with seed MC increasing in CK. Compared with changing of proline content in seeds stored 12 months, PDH1 transcript levels showed the opposite trend and maintained the lower levels in seeds of 16 and 28% MCs. The transcript level of P5CS1 was significantly affected by MC, and PDH1 could improve stress resistance for seed aging and maintain seed vigor during long-term storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.