ObjectiveThe effect of colonoscopy on colorectal cancer mortality is limited by several factors, among them a certain miss rate, leading to limited adenoma detection rates (ADRs). We investigated the effect of an automatic polyp detection system based on deep learning on polyp detection rate and ADR.DesignIn an open, non-blinded trial, consecutive patients were prospectively randomised to undergo diagnostic colonoscopy with or without assistance of a real-time automatic polyp detection system providing a simultaneous visual notice and sound alarm on polyp detection. The primary outcome was ADR.ResultsOf 1058 patients included, 536 were randomised to standard colonoscopy, and 522 were randomised to colonoscopy with computer-aided diagnosis. The artificial intelligence (AI) system significantly increased ADR (29.1%vs20.3%, p<0.001) and the mean number of adenomas per patient (0.53vs0.31, p<0.001). This was due to a higher number of diminutive adenomas found (185vs102; p<0.001), while there was no statistical difference in larger adenomas (77vs58, p=0.075). In addition, the number of hyperplastic polyps was also significantly increased (114vs52, p<0.001).ConclusionsIn a low prevalent ADR population, an automatic polyp detection system during colonoscopy resulted in a significant increase in the number of diminutive adenomas detected, as well as an increase in the rate of hyperplastic polyps. The cost–benefit ratio of such effects has to be determined further.Trial registration numberChiCTR-DDD-17012221; Results.
See Covering the Cover synopsis on page 1193. BACKGROUND AND AIMS: Up to 30% of adenomas might be missed during screening colonoscopy-these could be polyps that appear on-screen but are not recognized by endoscopists or polyps that are in locations that do not appear on the screen at all. Computer-aided detection (CADe) systems, based on deep learning, might reduce rates of missed adenomas by displaying visual alerts that identify precancerous polyps on the endoscopy monitor in real time. We compared adenoma miss rates of CADe colonoscopy vs routine white-light colonoscopy. METHODS: We performed a prospective study of patients, 18-75 years old, referred for diagnostic, screening, or surveillance colonoscopies at a single endoscopy center of Sichuan Provincial People's Hospital from June 3, 2019 through September 24, 2019. Same day, tandem colonoscopies were performed for each participant by the same endoscopist. Patients were randomly assigned to groups that received either CADe colonoscopy (n¼184) or routine colonoscopy (n¼185) first, followed immediately by the other procedure. Endoscopists were blinded to the group each patient was assigned to until immediately before the start of each colonoscopy. Polyps that were missed by the CADe system but detected by endoscopists were classified as missed polyps. False polyps were those continuously traced by the CADe system but then determined not to be polyps by the endoscopists. The primary endpoint was adenoma miss rate, which was defined as the number of adenomas detected in the second-pass colonoscopy divided by the total number of adenomas detected in both passes. RESULTS: The adenoma miss rate was significantly lower with CADe colonoscopy (13.89%; 95% CI, 8.24%-19.54%) than with routine colonoscopy (40.00%; 95% CI, 31.23%-48.77%, P<.0001). The polyp miss rate was significantly lower with CADe colonoscopy (12.98%; 95% CI, 9.08%-16.88%) than with routine colonoscopy (45.90%; 95% CI, 39.65%-52.15%) (P<.0001). Adenoma miss rates in ascending, transverse, and descending colon were significantly lower with CADe colonoscopy than with routine colonoscopy (ascending colon 6.67% vs 39.13%; P¼.0095; transverse colon 16.33% vs 45.16%; P¼.0065; and descending colon 12.50% vs 40.91%, P¼.0364). CONCLUSIONS: CADe colonoscopy reduced the overall miss rate of adenomas by endoscopists using white-light endoscopy. Routine use of CADe might reduce the incidence of interval colon cancers. chictr.org.cn study no: ChiCTR1900023086
Background: Computer-aided detection (CADe) of colon polyps has been demonstrated to improve colon polyp and adenoma detection during colonoscopy by indicating the location of a given polyp on a parallel monitor. The aim of this study was to investigate whether embedding the CADe system into the primary colonoscopy monitor may serve to increase polyp and adenoma detection, without increasing physician fatigue level. Methods: Consecutive patients presenting for colonoscopies were prospectively randomized to undergo routine colonoscopy with or without the assistance of a real-time polyp detection CADe system. Fatigue level was evaluated from score 0 to 10 by the performing endoscopists after each colonoscopy procedure. The main outcome was adenoma detection rate (ADR). Results: Out of 790 patients analyzed, 397 were randomized to routine colonoscopy (control group), and 393 to a colonoscopy with computer-aided diagnosis (CADe group). The ADRs were 20.91% and 29.01%, respectively (OR = 1.546, 95% CI 1.116–2.141, p = 0.009). The average number of adenomas per colonoscopy (APC) was 0.29 and 0.48, respectively (Change Folds = 1.64, 95% CI 1.299–2.063, p < 0.001). The improvement in polyp detection was mainly due to increased detection of non-advanced diminutive adenomas, serrated adenoma and hyperplastic polyps. The fatigue score for each procedure was 3.28 versus 3.40 for routine and CADe group, p = 0.357. Conclusions: A real-time CADe system employed on the primary endoscopy monitor may lead to improvements in ADR and polyp detection rate without increasing fatigue level during colonoscopy. The integration of a low-latency and high-performance CADe systems may serve as an effective quality assurance tool during colonoscopy. www.chictr.org.cn number, ChiCTR1800018058.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.