Bayueshan tunnel (BYS) is an important construction crossing over coal mine goaf. The underground mining subsidence has led the tunnel cracked seriously in three years after it was built. In order to evaluate the coal mine influence and future stability of the tunnels, probability integral method (PIM) was used to calculate the tunnel deformation. PIM is an experience function method based on random medium theory which is used widely in China. With the parameters analyzed, the tunnels’ subsidence was calculated. The results show that it can interpret the tunnel damage well, and the maximum normal strain positions fit the damaged tunnel positions well. It proved that PIM can be used to evaluate the tunnel’s radial deformation caused by underground coal excavation. In order to maintain tunnels to keep a long-term stability, the future deformation was calculated in case the coal excavation continues. It shows that the tunnel would be cracked again if the excavation continued. Other reasons such as the old goaf deformation and water and vehicle dynamic load are also important reasons for the tunnels’ deformation. In order to keep traffic safety, it needs to reinforce the cracked foundation under the tunnel. Then, grouting injection was proposed to reduce the old goaf deformation under the tunnels. If the fracture zone under the tunnels disturbed by the dynamic traffic load, the old goaf will face a risk of sudden collapse. So, to ensure the grouting effect, the grouting depth should be deeper than the sum of traffic load influence depth and height of coal mine caved fissure zone. The grouting scope should keep all the crack rock area under the tunnel from being disturbed by the dynamic traffic load. This design can reduce the sudden collapse risk of the goaf and reduces the vehicles’ load disturbance on the cracked rock. The researched technology provides an engineering guidance to tunnel subsidence calculation, stability evaluation, and maintenance in complex geological and engineering situations.
Line of Sight (LOS ) deformation based on Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques cannot be used in traditional probability integration method (PIM) parameter inversion. To improve the accuracy of parameter inversion, a model based on 3D deformation was proposed. The model simulates 3D deformation using PIM directly. The inverse of the Sum of the Squared Errors (SSE) of the PIM results and the measured deformation results was used as a fitting function within the GA. Reliable PIM parameters can be obtained based on this GA model. To identify the surface movement law of the Jinfeng coal mine, 6 Global Navigation Satellite System ( GNSS ) monitor points were established over the 011207 and 011809 working panels. Due to the limited number of points and the large distance between the points, it is not sufficient to obtain reliable PIM parameters using GNSS only. As a complement, 83 Sentinel-1A images were analyzed with small baseline subset (SBAS) DInSAR, and the LOS direction deformation was obtained. The reliable PIM parameters were calculated with the 3D inversion model based on the combination of LOS direction deformation and GNSS-monitored deformation. Then, those parameters were used to predict the coal mine deformation of panels 011207 and 011809, which demonstrated that the prediction results coincide with the measured results. The model can be used to study the laws of mining subsidence combined with DInSAR and GNSS, which can reduce the requirements of the number of GNSS points and the impact of radar decoherence. This provides a new technical approach for studying the law of surface movement in mining subsidence research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.