Post-occupancy evaluation (POE) is a process of evaluating the performance of a building after it has been occupied for at least several years. The authors conducted a comprehensive and critical review to provide a both qualitative and quantitative introduction of POE, including a brief introduction of the history, definition and benefits of POE, a statistical analysis of 146 POE projects since 2010, a comparison of 13 existing POE protocols, a summary of emerging research focuses, and potential future research areas. The 146 POE projects were analyzed in terms of building types, countries, purposes, methods used, and key findings. The review of 13 POE 2 protocols show the state-of-the-practice POE techniques. Apart from POE projects, the authors present emerging research topics related to the visualization of POE results, analyses of occupant survey database, and measurement of occupancy. Finally, the discussion summarizes the current condition of POE research and proposes five transitions that POE efforts should pursue: from
The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) are the most widely used thermal comfort indices. Yet, their performance remains a contested topic. The ASHRAE Global Thermal Comfort Database II, the largest of its kind, was used to evaluate the prediction accuracy of the PMV/PPD model. We focused on: (i) the accuracy of PMV in predicting both observed thermal sensation (OTS) or observed mean vote (OMV) and (ii) comparing the PMV-PPD relationship with binned OTS -observed percentage of unacceptability (OPU). The accuracy of PMV in predicting OTS was only 34%, meaning that the thermal sensation is incorrectly predicted two out of three times. PMV had a mean absolute error of one unit on the thermal sensation scale and its accuracy decreased towards the ends of the thermal sensation scale. The accuracy of PMV was similarly low for air-conditioned, naturally ventilated and mixed-mode buildings. In addition, the PPD was not able to predict the dissatisfaction rate. If the PMV model would perfectly predict thermal sensation, then PPD accuracy is higher close to neutrality but it would overestimate dissatisfaction by approximately 15-25% outside of it. Furthermore, PMV-PPD accuracy varied strongly between ventilation strategies, building types and climate groups. These findings demonstrate the low prediction accuracy of the PMV-PPD model, indicating the need to develop high prediction accuracy thermal comfort models. For demonstration, we developed a simple thermal prediction model just based on air temperature and its accuracy, for this database, was higher than PMV.
Recognizing the value of open-source research databases in advancing the art and science of HVAC, in 2014 the ASHRAE Global Thermal Comfort Database II project was launched under the leadership of University of California at Berkeley's Center for the Built Environment and The University of Sydney's Indoor Environmental Quality (IEQ) Laboratory. The exercise began with a systematic collection and harmonization of raw data from the last two decades of thermal comfort field studies around the world. The ASHRAE Global Thermal Comfort Database II (Comfort Database), now an online, open-source database, includes approximately 81,846 complete sets of objective indoor climatic observations with accompanying "right-here-right-now" subjective evaluations by the building occupants who were exposed to them. The database is intended to support diverse inquiries about thermal comfort in field settings. A simple web-based interface to the database enables filtering on multiple criteria, including building typology, occupancy type, subjects' demographic variables, subjective thermal comfort states, indoor thermal environmental criteria, calculated comfort indices, environmental control criteria and outdoor meteorological information. Furthermore, a web-based interactive thermal comfort visualization tool has been developed that allows end-users to quickly and interactively explore the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.