In this paper, we propose a family of modified spectral projection methods for nonlinear monotone equations with convex constraints, where the spectral parameter is mainly determined by a convex combination of the modified long Barzilai–Borwein stepsize and the modified short Barzilai–Borwein stepsize. We obtain a trial point by the spectral method and then get the iteration point by the projection technique. The algorithm can generate a bounded iterative sequence automatically, and we obtain the global convergence of the proposed method in the sense that every limit point is a solution of the nonlinear equation. The proposed method can be used to resolve the large-scale nonlinear monotone equations with convex constraints including smooth and nonsmooth equations. Numerical results for nonlinear equation problems and the
ℓ
1
-norm regularization problem in compressive sensing demonstrate the efficiency and efficacy of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.