This paper presents a self-learning control algorithm for model uncertain suspension systems using single network adaptive critic (SNAC) approach. First, a differential neural network (DNN) observer in conjunction with the weight updating law is established to observe the uncertain dynamic. Then, the nominal optimal value function is approximated by a critic NN whose weight is updated by a novel design learning law driven by the filtered parameter error. The online self-learning control policy is thus derived by approximately solving the Hamilton–Jacobi–Bellman (HJB) equation based on SNAC technique. The Lyapunov approach is synthesized to ensure the convergent characteristics of the entire closed-loop system composed of the DNN observer and the self-learning control policy. Computer simulation of a quarter car suspension system is established to verify the effectiveness of the proposed approach. Simulation results illustrated that the designed method can ensure the good performance in terms with the road hold and ride quality. In addition, independent of model and online self-learning characteristics make it possible to design a high-performance vehicle active suspension controller.
Roll responses of the semitrailer and the tractor provide higher lead time and characterise the roll instability of the commercial vehicles subjected to directional manoeuvres at highway speeds. This paper proposes a novel rollover index based on the synthesized roll angles of the tractor and trailer. Owing to the poor measurability, the unscented Kalman filter (UKF) algorithm is used to estimate the roll angle of the track and trailer, respectively. Meanwhile, different weight coefficients are considered in the rollover index to eliminate the influence of mutual coupling between the tractor and the trailer and improve the accuracy of the warning. For the practical implementation of the algorithm, a two-stage rollover warning method triggered by the video and audio is finally proposed to reduce the possibilities of false warnings. Co-simulation is presented to prove the validity of the proposed rollover warning approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.