Different horticultural types of lettuce exhibit tremendous morphological variation. However, the molecular basis for domestication and divergence among the different horticultural types of lettuce remains unknown. Here, we report the RNA sequencing of 240 lettuce accessions sampled from the major horticultural types and wild relatives, generating 1.1 million single-nucleotide polymorphisms (SNPs). Demographic modeling indicates that there was a single domestication event for lettuce. We identify a list of regions as putative selective sweeps that occurred during domestication and divergence, respectively. Genome-wide association studies (GWAS) identify 5311 expression quantitative trait loci (eQTL) regulating the expression of 4105 genes, including nine eQTLs regulating genes associated with flavonoid biosynthesis. GWAS for leaf color detects six candidate loci responsible for the variation of anthocyanins in lettuce leaves. Our study provides a comprehensive understanding of the domestication and the accumulation of anthocyanins in lettuce, and will facilitate the breeding of cultivars with improved nutritional value.
Dental follicle cells (DFCs) are a group of mesenchymal progenitor cells surrounding the tooth germ, responsible for cementum, periodontal ligament, and alveolar bone formation in tooth development. Cascades of signaling pathways and transcriptional factors in DFCs are involved in directing tooth eruption and tooth root morphogenesis. Substantial researches have been made to decipher multiple aspects of DFCs, including multilineage differentiation, senescence, and immunomodulatory ability. DFCs were proved to be multipotent progenitors with decent amplification, immunosuppressed and acquisition ability. They are able to differentiate into osteoblasts/cementoblasts, adipocytes, neuron-like cells, and so forth. The excellent properties of DFCs facilitated clinical application, as exemplified by bone tissue engineering, tooth root regeneration, and periodontium regeneration. Except for the oral and maxillofacial regeneration, DFCs were also expected to be applied in other tissues such as spinal cord defects (SCD), cardiomyocyte destruction. This article reviewed roles of DFCs in tooth development, their properties, and clinical application potentials, thus providing a novel guidance for tissue engineering.
Noncoding loci without epigenomic signals can be essential for maintaining global chromatin organization and cell viability.
As an important part of tumor microenvironment, tumor associated macrophages (TAMs) play a vital role in the occurrence, development, invasion, and metastasis of many malignant tumors and can significantly promote the formation of tumor blood vessels and lymphatic vessels, hence TAMs are greatly associated with poor prognosis. The research on nanomedicine has achieved huge progress, and nano-drugs have been widely utilized to treat various diseases through different mechanisms. Therefore, developing nano-drugs that are based on TAMs-associated anti-tumor mechanisms to effectively suppress tumor growth is expected to be a promising research filed. This paper introduces relevant information about TAMs in terms of their origin, and their roles in tumor genesis, development and metastasis. Furthermore, TAMs-related anti-tumor nano-drugs are summarized. Specifically, a wide range of nano-drugs targeting at TAMs are introduced, and categorized according to their therapeutic mechanisms toward tumors. Additionally, various nano delivery platforms using TAMs as cell carriers which aim at inhibiting tumor growth are reviewed. These two parts elucidate that the exploration of nanomedicine is essential to the study on TAMs-related anti-tumor strategies. This review is also intended to provide novel ideas for in-depth investigation on anti-tumor molecular mechanisms and nano-drug delivery systems based on TAMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.