Electroencephalogram (EEG) has been widely used in brain computer interface (BCI) due to its convenience and reliability. The EEG-based BCI applications are majorly limited by the time-consuming calibration procedure for discriminative feature representation and classification. Existing EEG classification methods either heavily depend on the handcrafted features or require adequate annotated samples at each session for calibration. To address these issues, we propose a novel dynamic joint domain adaptation network based on adversarial learning strategy to learn domain-invariant feature representation, and thus improve EEG classification performance in the target domain by leveraging useful information from the source session. Specifically, we explore the global discriminator to align the marginal distribution across domains, and the local discriminator to reduce the conditional distribution discrepancy between subdomains via conditioning on deep representation as well as the predicted labels from the classifier. In addition, we further investigate a dynamic adversarial factor to adaptively estimate the relative importance of alignment between the marginal and conditional distributions. To evaluate the efficacy of our method, extensive experiments are conducted on two public EEG datasets, namely, Datasets IIa and IIb of BCI Competition IV. The experimental results demonstrate that the proposed method achieves superior performance compared with the state-of-the-art methods.Index Terms-Deep neural network (DNN), domain adaptation, adversarial learning, electroencephalogram (EEG), motor imagery (MI), brain-computer interface (BCI).
Brain computer interface (BCI) based on motor imagery Electroencephalogram (EEG) has been widely used in various applications. Despite the previous efforts, the remained major challenges are effective feature extraction and timeconsuming calibration procedure. To address these issues, a novel Multi-Attention Adaptation Network integrating multiple attentions mechanism and transfer learning is proposed to classify the EEG signals. Firstly, the multi-attention layer is introduced to automatically capture the dominant brain regions relevant to mental tasks without incorporating any prior knowledge about the physiology. Then, a multi-attention convolutional neural network is employed to extract deep representation from raw EEG signals. Especially, a domain discriminator is applied to deep representation to reduce the differences between sessions for target subjects. The extensive experiments are conducted on three public EEG datasets (Dataset IIa and IIb of BCI Competition IV, High Gamma dataset), achieving the competitive performance with average classification accuracy of 81.48%, 82.54% and 93.97%, respectively. All the results outperform the state-of-theart algorithms demonstrate the effectiveness and robustness of the proposed method. Importantly, we confirm that it is easier and more appropriate to transfer the information from local brain regions than from the whole brain. This enhances the transfer ability of deep features and hence it improves the performance of BCI systems.
Electroencephalography-based Brain Computer Interfaces (BCIs) invariably have a degenerate performance due to the considerable individual variability.To address this problem, we develop a novel domain adaptation method with optimal transport and frequency mixup for cross-subject transfer learning in motor imagery BCIs. Specifically, the preprocessed EEG signals from source and target domain are mapped into latent space with an embedding module, where the representation distributions and label distributions across domains have a large discrepancy. We assume that there exists a nonlinear coupling matrix between both domains, which can be utilized to estimate the distance of joint distributions for different domains. Depending on the optimal transport, the Wasserstein distance between source and target domains is minimized, yielding the alignment of joint distributions. Moreover, a new mixup strategy is also introduced to generalize the model, where the inputs trials are mixed in frequency domain rather than in raw space. The extensive experiments on three evaluation benchmarks are conducted to validate the proposed framework. All the results demonstrate that our method achieves a superior performance than previous state-of-the-art domain adaptation approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.